首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值;
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值;
admin
2017-06-26
24
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设条件并利用矩阵乘法,可得 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 所以B=[*] (Ⅱ)因为α
1
,α
2
,α
3
是线性无关的三维列向量,可知矩阵C=(α
1
,α
2
,α
3
)可逆,且由AC=CB可得C
-1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值. 由|λE-B|=[*]=(λ-1)
2
(λ-4)=0 得矩阵B的特征值,也即矩阵A的特征值为 λ
1
=λ
2
=1,λ
3
=4. (Ⅲ)对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)χ=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
对应于λ
3
=4,解齐次线性方程组(4E-B)χ=0,得基础解系 ξ
3
=(0,1,1)
T
令矩阵Q=(ξ
1
,ξ
2
,ξ
3
)=[*] 则有Q
-1
BQ=[*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 P=CQ=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
2
,-2α
1
+α
3
,α
2
+α
3
) 则有P
-1
AP=Q
-1
BQ=diag(1,1,4)为对角矩阵,故P即为所求的可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/cVH4777K
0
考研数学三
相关试题推荐
设周期函数f(x)在(-∞,+∞)内可导,周期为4.又,则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
假设曲线ι1=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
函数y=C1ex+C22e-2x+xex满足的一个微分方程是().
设矩阵A=,且|A|=-1.又设A的伴随矩阵A*,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:BTB是正定矩阵.
微分方程满足y(0)=一1的特解是___________.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设有n台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,….n).用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2.…,Xn设E(Xi)=θ(i=1,2,…,n),问k1,k2,…,k3应取何值,才能在使用估计θ时,无偏,并
随机试题
治疗慢性宫颈糜烂疗效最好且疗程最短的方法是
巴戟天横切面玄参横切面
《公路水运安全生产管理监督管理办法》所指的三类安全生产管理人员中,属于施工单位主要负责人的有()。[2011年真题]
《建设工程安全生产管理条例》规定,实行施工总承包的,总承包单位应负责()。
关于编制按时间进度的施工成本计划,下列说法中,正确的有()。
出纳员小王开具支票一张,他所认为出票日期的正确写法是“二零零八年三月零五日”。()
在金融衍生工具中,远期合约的最大功能是()。
下列不是社会保障支出内容的是()。
简述消防检查的程序及要求。
以下关于网桥的说法,错误的是()。
最新回复
(
0
)