首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2018-05-17
70
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
一η
2
,η
2
+η
3
,η
3
一η
4
,η
4
+η
1
。
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
一η
2
+η
3
。
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
。
D、η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
。
答案
D
解析
由已知条件知Ax=0的基础解系由四个线性无关的解向量所构成。选项B中仅三个解向量,个数不合要求,故排除B项。
选项A和C中,都有四个解向量,但因为
(η
1
一η
2
)+(η
2
+η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
+η
4
)一(η
4
+η
1
)=0,
说明选项A、C中的解向量组均线性相关,因而排除A项和C项。用排除法可知选D。
或者直接地,由
(η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
。
因为
=2≠0,
知η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以选D。
转载请注明原文地址:https://kaotiyun.com/show/d0k4777K
0
考研数学二
相关试题推荐
设向量a=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件aTβ=0,记n阶矩阵A=aβT.求:(Ⅰ)A2;(Ⅱ)矩阵A的特征值和特征向量.
(2005年试题,二)设函数则().
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
(2009年试题,17)设z=f(x+y,x一y,xy),其中f具有二阶连续偏导数,求dz与
设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=________.
确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3-4x32为标准形.
下列说法正确的是().
随机试题
颈深筋膜封套层又称为
患者,女,26岁。3年前行人工流产,术后夫妇同居,未避孕,至今未再受孕。首先应考虑的诊断是
加强原材料、半成品及设备的质量控制,是保证工程质量的必要条件,也是实现工程()的前提。
在具体实施投资决策时,投资者需要先明确每一种证券的( )。
某单位年人员经费支出18.6万元,公用经费支出21.4万元,经常性支出25万元,则该单位人员经费占总支出的比重为()。
教育学作为一门科学,是以实践哲学和心理学为基础的。这一观点出自下面哪本教育学著作()
下列应对自然灾害的做法,错误的是()。
白大褂在19世纪末登上历史舞台是因为它能有效隔绝细菌,而一百多年后它遭到_______却是因为在隔绝细菌上做得不够好。在前一个阶段,白大褂顺应了现代医疗的发展潮流,而在后一个阶段它被一部分人视作现代医疗发展的______。人们对白大褂态度的变化,从本质上说
In1861itseemedinevitablethattheSouthernstateswouldbreakawayfromtheUnion.
CSPSolutionsoffersan______offinancialservicestomeettheneedsofsmallandmedium-sizedbusinesses.
最新回复
(
0
)