首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: (1)存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0; (2)存在ξ∈(0,3),使得f’’(ξ)=2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: (1)存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0; (2)存在ξ∈(0,3),使得f’’(ξ)=2f’(ξ)=0.
admin
2019-09-04
68
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:
(1)存在ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;
(2)存在ξ∈(0,3),使得f’’(ξ)=2f’(ξ)=0.
选项
答案
(1)令F(x)=∫
0
x
f(t)dt,F’(x)=f(x), ∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M, [*] 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,x)[*](0,3),使得f’(ξ
1
)=f’(ξ
2
)=0. (2)令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得φ’(ξ)=0, 而φ’(x)=e
-2x
[f’’(x)-2f’(x)]且e
-2x
≠0,故f’’(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/d7J4777K
0
考研数学三
相关试题推荐
设A=(aij)n×n是n(n>2)阶非零实矩阵,满足aij=Aij,其中Aij是A的元素aij的代数余子式,且a11=a12=…=a1n,则a11=_______.
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=________.
向半径为r的圆内随机抛一点,求此点到圆心的距离X的分布函数F(x),并求
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
微分方程(x+y)dy+(y+1)dx=0满足y(1)=2的特解是_______.
设A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,证明下列结论:(1)aij=AijATA=E且|A|=1(2)aij=-AijATA=E且|A|=-1.
求不定积分
微分方程y"一y=ex+1的一个特解应具有形式(其中a,b为常数)()
设φ(x)是以2π为周期的连续函数,且ψ’(x)=φ(x),ψ(0)=0.(1)求方程y’+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设z=z(x,y)是由x2一6xy+10y2—2yz一z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
随机试题
A、穿刺针应在呼气末屏气时刺入B、局部麻醉应达肝包膜C、两者均是D、两者均不是肝抽脓术的注意事项
破伤风的表现,下列哪项不对
流体运动黏度v的单位是()。
某平面力系向平面内任一点简化的结果都相同,此力系简化的最终结果可能为( )。
根据《水利工程建设项目管理规定》(水建[1995]128号),在水利工程建设程序中,属于前期工作的有()。
拘留是对犯罪嫌疑人、被告人采取的限制其人身自由的一种刑事强制措施。()
Aneweconomicspaperhassomeold-fashionedadviceforpeoplenavigatingthestressesoflife:Findaspousewhoisalsoyourb
______ispopularinthesouth?______hasflowersofdifferentcolorsbetweensingleformanddoubleform?
【S1】【S4】
Theteachercamein.Andthenthestudentsstoppedtalking.Thestudents___________stoptalking___________theteachercamein.
最新回复
(
0
)