首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2019-08-28
42
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|.|bE-A|=0,则|aE-A|=0或者 |bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/dvJ4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明丁是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设A=,E为3阶单位矩阵.求满足AB=E的所有矩阵B.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A、A为同阶可逆矩阵,则()
下列矩阵中,与矩阵相似的为()
设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
随机试题
1962年初,中共中央为总结经验教训、明确工作方向召开的会议是()。
运营隧道结构检查时,土建结构中衬砌分项的权重为()。
对工程建设施工、监理、验收等阶段执行强制性标准的情况实施监督的,应是下列哪一个机构和部门?()
经营者应当向消费者提供有关商品或服务的真实信息,不得作()。
按照法律位阶从高到低的顺序排列的是()。
请认真阅读下列材料,并按要求作答。动物的脸动物的脸非常生动,富有个性。画家黄永玉画的猫头鹰就抓住了它的特点,突出了它一张一闭的大眼睛和两道长长的眉毛,让我们
(2015年真题)甲秘密窃取他人持有的枪支,该行为同时符合盗窃罪和盗窃枪支罪的犯罪构成。按照我国刑法理论,这种情形属于()。
(06年)设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…).(I)证明存在,并求该极限;(Ⅱ)计算
执行语句“Value=10Mod3”后,返回的值是()。
books定位句为“However,therewasalargeitemofantiquefurnitureandabagfilledwithfirsteditionbooks.”。本题的定位词在听力原文中原词重现比较好捕捉到
最新回复
(
0
)