首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2019-08-28
76
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|.|bE-A|=0,则|aE-A|=0或者 |bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/dvJ4777K
0
考研数学三
相关试题推荐
(1989年)假设函数f(x)在[a,b]上连续.在(a,b)内可导,且f’(x)≤0.记证明在(a,b)内F’(x)≤0.
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设A=,E为3阶单位矩阵.求满足AB=E的所有矩阵B.
设A=,E为3阶单位矩阵.求方程组Ax=0的一个基础解系;
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
设矩阵A,B满足A*BA=2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______.
随机试题
简述项目投资的分类。
与硅肺发病关系最密切的细胞是
甲、乙、丙拟共同出资50万元设立一有限公司。公司成立后,在其设置的股东名册中记载了甲乙丙3人的姓名与出资额等事项,但在办理公司登记时遗漏了丙,使得公司登记的文件中股东只有甲乙2人。下列哪一说法是正确的?(2012年卷三第26题)
蒸压灰砂砖适用于:[2014—014]
出口退税的形式包括()。
四川最长、最宽的山系是()。
某学生智商为100表示()。
(2016·江西)关于个体身心发展的动因理论有()
Dogsaresocialanimalsandwithoutpropertraining,theywillbehavelikewildanimals.Theywillspoilyourhouse,destroyyou
Who’sLiMing?
最新回复
(
0
)