首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
admin
2016-04-11
32
问题
设A为n阶非零实方阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,当A
*
=A
T
时,证明|A|≠0.
选项
答案
由公式AA
T
=|A|E,得AA
T
=|A|E,若|A|=0,则有AA
T
=O,设A的第i个行向量为α
i
(i=1,2,…,,z),则由AA
T
的第i行第i列处的元素为零,有α
i
T
α
i
=‖α
i
‖=0,(i=1,2,…,n),即α
i
=0,i=1,2,…,n,于是A=0,这与已知A为非零阵矛盾,故|A|≠0.
解析
本题主要考查伴随矩阵的概念和性质.注意A
*
的第i行第j列处元素为A
ij
,伴随矩阵的定义及公式AA
*
=A
*
A=|A|E是处理逆矩阵及伴随矩阵有关问题的基本出发点,必须深刻理解、熟练掌握.例如,当|A|≠0时,由上述公式可得几个常用的结果:①A
—1
=
;③|A
*
|=|A|
N—1
(当|A|=0时可证明|A
*
|=0,故此公式对任何n(n≥2)阶方阵A恒成立);④(A
*
)
*
=|A|
n—2
A(由(A
*
)
—1
=
,于是有(A
*
)
*
=|A|
n—2
A).
还需指出的是,满足本题给定条件的实矩阵A,实际上是行列式为1的正交矩阵.事实上,由已知的关系式A
T
=A
*
两端取行列式,得|A|=|A
T
|=|A
*
=|A|
n—1
,因此|A|的取值范围是{0,1,一1}。
转载请注明原文地址:https://kaotiyun.com/show/eNw4777K
0
考研数学一
相关试题推荐
设相似于对角矩阵,则a=________。
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
设f(x,y,z)=ezyz2,其中z=z(x,y)由方程x+y+z+xyz=0(xy≠-1)确定,则f’x(0,1,-1)=________。
设F(x)是f(x)在区间(0,1)内的一个原函数,则F(x)+f(x)在区间(0,1)内().
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.①求A的特征值.②求A的特征向量.③求A*一6E的秩.
设y=y(x)是y’’-6y’+9y=e3x满足y(0)=0,y’(0)=0的解,求y(x)及y(x)的单调区间和极值
求函数y=(x-1)的单调区间与极值,并求该曲线的渐近线.
求u=x2+y2+z2在约束条件下的最小值和最大值.
设半径为R的球体上,任意一点P处的密度为,其中P0为定点,且与球心的距离r0大于R,则该物体的质量为________.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
随机试题
著名的幼儿教育家()被誉为“幼儿园之父”。
男,26岁,慢性肾衰竭,饮食中每日蛋白含量不应超过
女,45岁,左腮腺肿块多年,边界清楚,有包膜,切面实性。镜下见肿瘤细胞呈圆形或多边形,大小一致,细胞质含嗜碱性颗粒,瘤细胞排列成片块或腺泡状,具有分泌功能,导管系统不明显。最可能的诊断是
患者男性,35岁,反复上腹部疼痛6年,多于每年秋季发生,疼痛多出现于餐前,进餐后可缓解,近2日疼痛再发,伴反酸。体检发现剑突下压痛,Hb10g/L,粪便隐血(-++)。进一步应先作哪项检查
职能制是在“直线制”的基础上发展起来的,它的优点包括。()。
《基础教育课程改革纲要(试行)》规定实行()三级课程管理。
GTR
Videogameshavebecomeincreasinglyrealistic,especiallythoseinvolvingarmedcombat.America’sarmedforceshaveevenused
Howmanypeoplewerekilledinthebombingaltogether?
A、Two-dimensional.B、Three-dimensional.C、Colorful.D、Detailed.A对话中女士说,为了加强画的平面性,GeorgiaO’keffe还去除了结构的细节,由此可知,GeorgiaO’keffe的
最新回复
(
0
)