首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
admin
2016-03-05
44
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
(1)A
2
.
(2)P
-1
AP.
(3)A
T
.
(4)
.
α肯定是其特征向量的矩阵共有( )
选项
A、1个
B、2个
C、3个
D、4个
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量.
又
知α必是矩阵
属于特征值
的特征向量.关于(2)和(3)则不一定成立.这是因为 (P
一1
AP)(P
一1
Aα)=P
一1
Aα=λP
一1
α,按定义,矩阵P
一1
AP的特征向量是P
一1
α.因为P
一1
α与α不一定共线,因此α不一定是P
一1
AP的特征向量,即相似矩阵的特征向量是不一样的.线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量.所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/ea34777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点η∈(0,1),使得f”η)=2.
设A3×3是秩为1的实对称矩阵,λ1=2是A的一个特征值,其对应的特征向量为a1=(-1,1,1)T,则方程组Ax=0的基础解系为()
设x1>0,xn+1=ln(1+xn),n=1,2,….证明xn存在,并求此极限;
证明方程分别有包含于(1,2),(2,3)内的两个实根.
设齐次线性方程组(I)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(一1,2,2,1)T.试问a,b为何值时,(I)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
已知y1=cos2x-xcos2x,y2=sin2x-xcos2x-xcos2x是二阶常系数非齐次微分方程的两个解,则该方程是().
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
已知点A(2,-1,7)沿向量a=(8,9,-12)的方向得线段AB,且|AB|=34,则点B坐标为________.
随机试题
根据十三届全国人大五次会议审议通过的《政府工作报告》,下列属于2022年我国经济发展主要预期目标的是:①居民消费价格涨幅3%左右②实现高水平科技自立自强③国内生产总值增长6.5%左右④粮食产量保持在1.3万亿斤以上⑤坚持政府过紧日子,更好节用裕民
关于胸部CT扫描技术,叙述错误的是
患者,女,58岁。今日胸痛发作频繁,2小时前胸痛再次发作,含化硝酸甘油不能缓解。检查:血压90/60mmHg,心律不整。心电图Ⅱ、Ⅲ、aVF导联ST段抬高呈弓背向上的单向曲线。应首先考虑的是
人工流产负压吸引术适用于
腐败坏死性蜂窝织炎的特征性表现是A.红、肿、热、痛B.功能障碍C.可触及捻发音D.引流区淋巴结肿痛E.以上均是
长输管道在石方或戈壁段进行管道下沟及回填作业时,应在沟底铺垫和管顶回填()的细土。
一般会计人员离开会计岗位办理交接手续时,由( )监交。
在现代社会中,通常控制社会、经济运行的两大并行力量是()。
下列表述中,最能体现启发式教学思想的是()。
人在运动时要流汗的原因是()。
最新回复
(
0
)