首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2. (2)P-1AP. (3)AT. (4). α肯定是其特征向量的矩阵共有( )
admin
2016-03-05
56
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
(1)A
2
.
(2)P
-1
AP.
(3)A
T
.
(4)
.
α肯定是其特征向量的矩阵共有( )
选项
A、1个
B、2个
C、3个
D、4个
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量.
又
知α必是矩阵
属于特征值
的特征向量.关于(2)和(3)则不一定成立.这是因为 (P
一1
AP)(P
一1
Aα)=P
一1
Aα=λP
一1
α,按定义,矩阵P
一1
AP的特征向量是P
一1
α.因为P
一1
α与α不一定共线,因此α不一定是P
一1
AP的特征向量,即相似矩阵的特征向量是不一样的.线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量.所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/ea34777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,且A2=A,r(A)=r(0<r<n),则行列式|A-2E|=________.
设x=z(x,y)由方程x-z=f(y-z)确定,其中f可微,则=________.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程f’(x)=0在(0,1)内至少有一个实根;
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是()
设向量a=(1,1,-1)T是的一个特征向量.求a,b的值.
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
由参数方程组确定的函数y=f(x)的单调区间与极值、凹凸区间与拐点.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
若线性方程组有解,则常数α1,α2,α3,α4应满足条件_____.
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
随机试题
Iftheonlineserviceisfreethenyouaretheproduct,technicianssay.GoogleandFacebookmakea【C1】________collectingperson
脂肪是人体能量最重要的来源。()
简述领导者个体绩效考评的主要内容。
设f(x)是连续的奇函数,且∫01f(x)dx=1,则∫-10f(x)dx=_________.
呕血还是便血取决于出血部位的高低,出血的速度和出血量是次要的。
女性患者,甲状腺肿大伴多汗、多食、消瘦、心悸、烦躁,根据同位素扫描及血T3、T4检查,诊断为甲亢。治疗期间应定期复查()
孔子的仁爱核心是“恕”,“恕”的正确表达是()。
完成全面建设小康社会和实现现代化的历史性任务,重点和难点都在()。
Weoftentendtoassociatesmilingastheresultofapositiveeventormood.Butresearchdemonstratesthattheactofsmiling,
A、Space.B、Tranquility.C、Appliances.D、Location.B对话中甲,男士问道:“现在,最大的问题是:有噪音吗?邻居怎么样?”女士回答房子所在的地方很宁静,故B项“宁静”是男士主要考虑的问题。其他三项都不是男士主要
最新回复
(
0
)