首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
admin
2021-02-25
57
问题
设4元齐次方程组(Ⅰ)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
求方程组(Ⅰ)的一个基础解系;
选项
答案
对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 得方程组(Ⅰ)的同解方程组 [*] 由此可得方程组(Ⅰ)的一个基础解系为 β
1
=(1,0,2,3)
T
,β
2
=(0,1,3,5)
T
.
解析
本题考查两个齐次线性方程组是否有非零公共解的求解问题.所涉及的知识点是齐次线性方程组基础解系的概念和通解的结构;齐次线性方程组有非零解
转载请注明原文地址:https://kaotiyun.com/show/ea84777K
0
考研数学二
相关试题推荐
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
随机试题
Thehorseandcarriageisthingofthepast,butloveandmarriageisstillwithusandstillcloselyinterrelated.MostAmerica
I/O接口位于主机和总线之间。()
A.蕈伞型食管癌B.溃疡型食管癌C.缩窄型食管癌D.贲门失弛缓症E.食管良性狭窄(疤痕)钡餐造影贲门部呈鸟嘴状狭窄
流感病毒的主要传播途径是
对于抗震设防类别为乙类的建筑物,下列选项中哪项不符合《建筑抗震设计规范》GB50011—2010的要求?
有效的薪酬和补偿制度,应能对建设项目管理组织的成员起到激励的效果,符合薪酬管理策略的()。
国家助学贷款的用途是()。
在小组结束期,工作者面对组员的离别情绪,要给予适当的接纳与支持,引导他们做好情绪表达和学习处理离别情绪,这时工作者在担当( )。
In low - speed network ,it is usually adequate to wait for congestion to occur and then react to it by telling the source of pac
WhatdidPhoebefinddifficultaboutthedifferentresearchtechniquessheused?ChooseFIVEanswersfromtheboxandwritethe
最新回复
(
0
)