首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
admin
2021-02-25
86
问题
设4元齐次方程组(Ⅰ)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
求方程组(Ⅰ)的一个基础解系;
选项
答案
对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 得方程组(Ⅰ)的同解方程组 [*] 由此可得方程组(Ⅰ)的一个基础解系为 β
1
=(1,0,2,3)
T
,β
2
=(0,1,3,5)
T
.
解析
本题考查两个齐次线性方程组是否有非零公共解的求解问题.所涉及的知识点是齐次线性方程组基础解系的概念和通解的结构;齐次线性方程组有非零解
转载请注明原文地址:https://kaotiyun.com/show/ea84777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
,求A的全部特征值,并证明A可以对角化.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
微分方程y〞+y=-2x的通解为_________.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
Interestinpursuinginternationalcareershassoaredinrecentyears,enhancedbychronic(长久的)personnelshortagesthatareca
新生儿生后细菌性肺炎最常见的病原体是
患者,男性,62岁。慢性咳嗽、咳痰10余年。有冠心病病史5年,平时无症状。昨日因胃溃疡大出血急诊手术治疗,手术后第1天出现呼吸困难,伴发热。动脉血气分析(呼吸空气时):pH7.48,PaO250mmHg(6.7kPa),PaCO230mmHg(4.0
制作可摘局部义齿时,选择人工后牙不需要考虑A.近远中径B.牙尖高度C.人工牙硬度D.颊舌径E.颌间距离
电梯是进行升降或者平行运送人、货物的机电设备。特种设备安全法所指的电梯是()的机电设备。
(2017年)把大班上课、小班讨论、个人独立研究结合在一起,并采用灵活的时间单位代替固定划一的上课时间的教学组织形式是()
为规范收入分配,防止两极分化,对过高收入要进行调节,调节的主要措施有()。
动物园饲养的动物致人损害的,动物园应当承担侵权责任,但能够证明尽到管理职责的,动物园()。
contiguouspoorareas
Inanagewhereglobalizationisthetrend,learningaforeignlanguagebecomesessential.Becauseofglobalization,citizenso
最新回复
(
0
)