首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
admin
2021-02-25
75
问题
设4元齐次方程组(Ⅰ)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
求方程组(Ⅰ)的一个基础解系;
选项
答案
对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 得方程组(Ⅰ)的同解方程组 [*] 由此可得方程组(Ⅰ)的一个基础解系为 β
1
=(1,0,2,3)
T
,β
2
=(0,1,3,5)
T
.
解析
本题考查两个齐次线性方程组是否有非零公共解的求解问题.所涉及的知识点是齐次线性方程组基础解系的概念和通解的结构;齐次线性方程组有非零解
转载请注明原文地址:https://kaotiyun.com/show/ea84777K
0
考研数学二
相关试题推荐
设f(x,y)在点0(0,0)的某邻域U内连续,且常数试讨论f(0,0)是否为f(x,y)的极值?若为极值,是极大值还是极小值?
设u=u(χ,y)有二阶连续偏导数,证明:在极坐标变换χ=rcosθ,y=rsinθ下有
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
随机试题
Itisnouse______thatyoudidn’tknowthetruth.
A.国家农业主管部门B.国家药品监督管理部门C.省级药品监督管理部门D.国家药品监督管理部门和国家农业主管部门批准从事麻醉药品、第一类精神药品生产以及第二类精神药品原料药生产企业的部门()。
根据《企业所得税法》的规定,下列关于企业所得税优惠税率的表述中,不正确的是()。
下列原则中,属于税务行政诉讼的原则有()。
下列关于生物膜的叙述,不正确的是()。
【2010.福建】下列选项体现趋避冲突的是()。
行为矫正是用()原理来强化学生良好的行为以取代或消除其不良行为的一种方法。
学校事故就其产生而言,可以分为意外事故和过错事故两大类。()
Habitsareafunnything.Wereachforthemmindlessly,settingourbrainsonauto-pilotandrelaxingintotheunconsciouscomfo
Therearemanykindsoflibrariesintheworld.Andwecouldborrowbooksorgettheinformationfromit.Theymaybe【B1】______
最新回复
(
0
)