首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 求方程组(Ⅰ)的一个基础解系;
admin
2021-02-25
80
问题
设4元齐次方程组(Ⅰ)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
求方程组(Ⅰ)的一个基础解系;
选项
答案
对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 得方程组(Ⅰ)的同解方程组 [*] 由此可得方程组(Ⅰ)的一个基础解系为 β
1
=(1,0,2,3)
T
,β
2
=(0,1,3,5)
T
.
解析
本题考查两个齐次线性方程组是否有非零公共解的求解问题.所涉及的知识点是齐次线性方程组基础解系的概念和通解的结构;齐次线性方程组有非零解
转载请注明原文地址:https://kaotiyun.com/show/ea84777K
0
考研数学二
相关试题推荐
a,b取何值时,方程组有解?
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
随机试题
简述丰田LS400汽车电控悬架系统的检修过程。
患者,男,28岁,因车祸致脑外伤入院,神志不清。查体:体温39.5℃,脉搏68次/分,呼吸17次/分,血压165/95mmHg,遵医嘱给予降温,静脉滴注甘露醇。此时最主要的降温方式是
慢性感染结局为
男性,35岁,农民,因畏寒、发热、全身酸痛6天,尿黄2天于7月28日入院,体温39℃,巩膜黄染,球结膜充血,A180IU/L,T-Bil58tXtooL/L,尿蛋白(++),RBC4—5个/HP,WBC10-12个/HP,确诊本病人的诊断依据是
复验灰线的检查内容不包括()。
根据《建设项目工程总承包管理规范》GB/T50358-2005,工程总承包项目管理的主要内容有()。
根据《汽车贷款管理办法》,个人汽车贷款的贷款人应当建立借款人信贷档案,载明()。
2016年9月,A、B、C、D协商设立普通合伙企业。其中,A、B、D系辞职职工,C系一法人型集体企业,其拟定的合伙协议约定:A以劳务出资、B、D以实物出资,对企业债务承担无限责任,并由A、D负责公司的经营管理事务;C以货币出资,对企业债务以其出资额承担有限
A、 B、 C、 D、 B
Marywasquiteconsiderateofherhusband______sheusedtomakecoffeeforhimwhenhewroteinthedeadnight.
最新回复
(
0
)