首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2019-05-14
39
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(
)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n-r
=ξ
n-r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n-r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即(k
0
+k
1
+…+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0, 故β
0
,β
1
,β
2
,…,β
n-r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组,设β
1
,β
2
,…,β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n-r+1
=β
n-r+2
-β
1
根据定义,易证γ
1
,γ
2
,…,γ
n-r+1
线性无关,又γ
1
,γ
2
,…,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量盼个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ei04777K
0
考研数学一
相关试题推荐
自动生产线在调整后出现废品的概率为p(0<P<1),当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的概率分布、数学期望和方差.
设y=g(χ,z),而z=z(χ,y)是由方程f(χ-z,χy)=0所确定,其中函数f,g均有连续偏导数,求.
∫02π|sinχ-cosχ|dχ=_______.
设随机变量(X,Y)在矩形区域D={(χ,y):0<χ<2.0<y<2}上服从均匀分布,(Ⅰ)求U=(X+Y)2的概率密度;(Ⅱ)求V=max(X,Y)的概率密度;(Ⅲ)求W=XY的概率密度.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
设随机事件A,B及A∪B的概率分别为0.4,0.3和0.6,则P(A)=_______.
求曲线积分I=∫Cxydx+yzdy+xzdz,C为椭圆周:x2+y2=1,x+y+z=1,逆时针方向.
下列事件中与A互不相容的事件是
求函数u=xy+yz+zx在M0(2,1,3)处沿与各坐标轴成等角方向的方向导数.
设f(x)在[0,1]上连续,且满足Jf(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
随机试题
政府全面直接控制的基金型模式,以()为典型。
医学伦理学主要研究医学领域中的
双方欲签订的合同的性质是()。起草该合同主要条款时,应注意以下几点()。
在微机中,访问最快的存储器是()。
财政法制调整国家对财政资金的管理关系包括( )。
甲股份有限公司因经营管理不善,无力偿还到期债务,该公司的债权人A公司于某年6月12日向甲公司所在地法院提出破产申请。法院于6月15日通知甲公司,甲公司认为《企业破产法》不适用于股份有限公司,提出异议。法院于6月23日裁定受理该破产申请,同时指定B律师事务所
以学习成绩为中心、在教师指导下使用结构化有序材料进行的课堂教学称为()
谈谈发散思维和辐合思维的关系。
刑法面前人人平等原则
采用RSA算法,网络中N个用户之间进行加密通信,需要密钥个数是()。
最新回复
(
0
)