首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
admin
2018-06-12
54
问题
已知α
1
,α
2
,…,α
t
是齐次方程组Aχ=0的基础解系,试判断α
1
+α
2
,α
2
+α
3
,…,α
t-1
+α
t
,α
t
+α
1
是否为Aχ=0的基础解系,并说明理由.
选项
答案
作为齐次方程组AX=0的基础解系α
1
,α
2
,…,α
t
的线性组合,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是AX=0的一组解,个数=t=n-r(A).α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是不是AX=0的基础解系只要判断它们是否线性无关. 设A=(α
1
,α
2
,…,α
t
),B=(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
),则B=AC,其中 [*] 因为α
1
,α
2
,…,α
t
线性无关,所以A列满秩,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=r(B)=r(C). |C|=1+(-1)
t+1
, 当t是奇数时,|C|=2,C可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性无关,因此是AX=0的基础解系. 当t是偶数时,|C|=0,C不可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)<t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性相关,因此不是AX=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OFg4777K
0
考研数学一
相关试题推荐
求下列齐次线性方程组的基础解系:(3)nχ1+(n-1)χ2+…+2χn-1+χn=0
设A是三阶矩阵,其特征值是1,3,-2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,-α2),则P-1AP=()
下列矩阵中A与B合同的是()
设η1,…,ηs是非齐次线性方程组Aχ=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明χ=k1η1+k2η2+…+ksηs也是方程组的解.
η*是非齐次线性方程组Aχ=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系.证明:(1)η*,ξ1…,ξn-r线性无关;(2)η*,η*+ξ1,…,η*+ξn-r线性无关.
设曲线厂的极坐标方程是r=eθ(0≤0≤π),则г上与直线y+χ=1平行的切线的直角坐标方程是_______.
已知f(x)二阶可导,且f(x)>0,f(x)f’’(x)-[f’(x)]2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
当x→0+时,下列无穷小中,阶数最高的是().
求arctanx带皮亚诺余项的5阶麦克劳林公式.
随机试题
根据《消防法》要求,机关、团体、企业、事业等单位应当履行的消防安全职责,其中一般单位应当履行的消防安全职责不包括()。
急性水肿性胰腺炎的体征不包括()
A.葛根黄芩黄连汤加减B.藿香正气散加减C.保和丸加减D.人参乌梅汤加减E.生脉散合参附龙牡救逆汤加减小儿腹泻伤食泻的治疗方剂为()
治疗痿证使用“泻南方,补北方”的原则,是因为该病()
社会主义和谐社会的主要特征包括:()。
对于非经营性项目,其财务收益包括()。
欧洲债券是指借款人在本国境外市场发行的,以第三国的货币为面值的国际债券。()
幼儿园大班的东东在学校丢失了自己心爱的文具盒。放学后,大班的班主任李某将全班学生留下来,并挨个进行搜身、检查,班主任李某的这种行为()。
完成句子。例如:那座桥800年的历史有了那座桥有800年的历史了。遇到时候得冷静千万麻烦的
A、Exercisingtheentirebody.B、Havingyourbloodpressuretaken.C、Losingweightpriortoexercise.D、Breathingdeeplybeforee
最新回复
(
0
)