首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
admin
2018-06-12
59
问题
已知α
1
,α
2
,…,α
t
是齐次方程组Aχ=0的基础解系,试判断α
1
+α
2
,α
2
+α
3
,…,α
t-1
+α
t
,α
t
+α
1
是否为Aχ=0的基础解系,并说明理由.
选项
答案
作为齐次方程组AX=0的基础解系α
1
,α
2
,…,α
t
的线性组合,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是AX=0的一组解,个数=t=n-r(A).α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是不是AX=0的基础解系只要判断它们是否线性无关. 设A=(α
1
,α
2
,…,α
t
),B=(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
),则B=AC,其中 [*] 因为α
1
,α
2
,…,α
t
线性无关,所以A列满秩,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=r(B)=r(C). |C|=1+(-1)
t+1
, 当t是奇数时,|C|=2,C可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性无关,因此是AX=0的基础解系. 当t是偶数时,|C|=0,C不可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)<t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性相关,因此不是AX=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OFg4777K
0
考研数学一
相关试题推荐
已知矩阵A=的特征值的和为3,特征值的乘积是-24,则b=_______.
二次型f(χ1,χ2,χ3,χ4)=χ32+4χ42+2χ1χ2+4χ3χ4的规范形是_______.
矩阵A=的三个特征值分别为______.
设f(χ)=在χ=0处二阶导数存在,则常数a,b分别是
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记α=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
计算不定积分
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
设X1,X2,…,X25是取自于正态总体N(μ,9)的样本,其中μ为未知参数,如果对检验问题H0:μ=μ0,H1:μ≠μ0,取检验的拒绝域为W={(X1,X1,…,X25):}其中试决定常数C,使检验的显著性水平为0.05.
定积分I=|sinx|.arctanexdx=______.
随机试题
曲线y=xlnx平行于直线y=x+2的切线方程为________.
因治疗不当,影响骨折正常愈合过程的因素有
A.分离性障碍B.慢性酒精中毒所致精神障碍C.人格解体神经症D.癫痫所致精神障碍E.神经衰弱对自我和周围现实之间的界限性意识障碍、不真实感多见于
直肠手术最易损伤的泌尿系统器官是
签订房地产经纪服务合同的主体是()。
居住区竖向规划的内容不包括以下哪项?[2007-68]
关于遗产信托的作用,下列说法错误的是( )。
投资顾问服务协议应当约定自签订()个工作日内可以书面提出解除协议约定。
如果字符B的ASCII码的二进制数是1000010,那么字符F对应的ASCII码的十六进制数为______。
A、AskJoantorecommendagoodrestaurant.B、EatdinneratJoan’shouse.C、Asktheirfriendsabouttherestaurant.D、Gotother
最新回复
(
0
)