首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
已知α1,α2,…,αt是齐次方程组Aχ=0的基础解系,试判断α1+α2,α2+α3,…,αt-1+αt,αt+α1是否为Aχ=0的基础解系,并说明理由.
admin
2018-06-12
52
问题
已知α
1
,α
2
,…,α
t
是齐次方程组Aχ=0的基础解系,试判断α
1
+α
2
,α
2
+α
3
,…,α
t-1
+α
t
,α
t
+α
1
是否为Aχ=0的基础解系,并说明理由.
选项
答案
作为齐次方程组AX=0的基础解系α
1
,α
2
,…,α
t
的线性组合,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是AX=0的一组解,个数=t=n-r(A).α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
是不是AX=0的基础解系只要判断它们是否线性无关. 设A=(α
1
,α
2
,…,α
t
),B=(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
),则B=AC,其中 [*] 因为α
1
,α
2
,…,α
t
线性无关,所以A列满秩,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=r(B)=r(C). |C|=1+(-1)
t+1
, 当t是奇数时,|C|=2,C可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)=t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性无关,因此是AX=0的基础解系. 当t是偶数时,|C|=0,C不可逆,r(α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
)<t,α
1
+α
2
,α
2
+α
3
,…,α
t
+α
1
线性相关,因此不是AX=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OFg4777K
0
考研数学一
相关试题推荐
若3维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为_______.
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2(2)P-1AP(3)AT(4)E-Aα肯定是其特征向量的矩阵共有()
设A,B均为n阶可逆矩阵,则下列运算正确的是()
设A=,B是3阶非零矩阵,且AB=O,a=_______.
已知n元齐次线性方程组A1χ=0的解全是A2χ=0的解,证明A2的行向量可以由A1的行向量线性表示.
设A(2,2),B(1,1),г是从点A到点B的线段下方的一条光滑定向曲线y=y(χ),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分I=∫г[πφ(y)cosπχ-2πy]dχ+[φ′(y)sinπχ-2π]dy.
设曲线厂的极坐标方程是r=eθ(0≤0≤π),则г上与直线y+χ=1平行的切线的直角坐标方程是_______.
设函数f(x)在(a,b)内存在二阶导数,且f’’(x)<0.试证:若x1,x2,…,xn∈(a,b),且xi<xi+1(i=1,2,…,,n-1),则其中常数ki>0(i=1,2,…,n)且
证明不等式1+xln(x+
定积分I=|sinx|.arctanexdx=______.
随机试题
以下选项不属于萨迪《蔷薇园》第一卷的艺术特色的是()
你最好带件毛衣,以防天气变冷。
抗原抗体反应时,抗体过剩称为
经夏某申请,某县社保局作出认定,夏某晚上下班途中驾驶摩托车与行人发生交通事故受重伤,属于工伤。夏某供职的公司认为其发生交通事故系醉酒所致,向法院起诉要求撤销认定。某县社保局向法院提交了公安局交警大队交通事故认定书、夏某住院的病案和夏某同事孙某的证言。下列说
咨询公司编制的技术建议书中的工程咨询经验应重点介绍()。
下列关于资产可收回金额的表述中,正确的有()。
年老的游客好思古怀旧,对游览名胜古迹、会见亲且月老友有较大的兴趣,他们希望得到尊重,希望导游人员多与他们交谈。()
下列说法错误的是:
杨柳是我国古代诗词里面较为常见的意象,往往蕴涵离别之情,下列名句中不是表达送别意象的是()。
下列控制格式输入/输出的操作符中,能够设置浮点数精度的是()。
最新回复
(
0
)