首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示, (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2
(2011年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示, (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2
admin
2021-01-19
47
问题
(2011年)设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示,
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
(Ⅰ)4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 0=|β
1
,β
2
,β
3
|=[*]=a-5, 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示. (Ⅱ)令矩阵A=[α
1
,α
2
,α
3
┆β
1
,β
2
,β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
-α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
-2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/eq84777K
0
考研数学二
相关试题推荐
证明极限不存在.
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
设x∈(0,1),证明下面不等式:(1)(1+x)ln2(1+x)<x2;(2).
设u=u(x,y,z)连续可偏导,令(1)若,证明:u仅为θ与φ的函数.(2)若,证明:u仅为r的函数.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设求曲线y=f(x)与它所有水平渐近线及y轴围成图形的面积.
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.证明:在[一a,a]上存在η,使
求下列积分。设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x(f(y)dy。
随机试题
患者,男,30岁,在肾上腺区可见一直径3cm的肿物,外缘光滑T1加权像呈低信号,T2加权像信号强度类似脑脊液,注射Gd—DTPA后不均匀增强,诊断为
有助于系统性红斑狼疮患者的诊断并且与病情活动性相关的是
面部危险三角区感染时禁用热疗的主要原因是()。
短期投资按照企业投资对象进行划分,可分为()。
“一带一路”建设的合作重点可以概括为()。
依据FIDIC《施工合同条件》规定,承包商最终结算的合同价款可能与中标函中注明的业主接受的合同款额不一致,原因可能是()等。
石油化工生产装置可以通过火炬排放易燃易爆气体,这要求在火炬筒周边()m范围内严禁可燃气体放空。
根据以下情境材料。回答下列问题。省政府决定开展食品安全专项整治工作,为了落实工作要求,市政府领导指示由你负责此项工作,要求组织一些人员认真筹备,务必做好落实。专项整治工作实地走访途中,偶遇某食品厂员工与某职工食堂员工吵闹,大量群众围观,食品厂使用死猪
危险品
What’sthechanceof______ageneralelectionthisyear?[2005]
最新回复
(
0
)