首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=O的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=O的通解.
admin
2018-05-21
47
问题
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=
且AB=O,求方程组AX=O的通解.
选项
答案
由AB=O得r(A)+r(B)≤3且r(A)≥1. (1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为 [*] (k
1
,k
2
为任意常数); (2)当k=9时,r(B)=1,1≤r(A)≤2, 当r(A)=2时,方程组AX=0的通解为 [*] 当r(A)=1时,A的任意两行都成比例,不妨设a≠0, [*] (k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/f7r4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
设二维随机变量(U,V)的概率密度为又设x与y都是离散型随机变量,其中X只取一1,0,1三个值,Y只取一1,1两个值,且E(x)=0.2,E(Y)=0.4,P(X=一1,Y=1)=P(X=1,Y=一1)=P(X=0,Y=1)=(Ⅰ)(X,Y)的概率分
方程y"+y’2=0的通解为________.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.问A能否相似对角化?若能,请求出相似变换矩阵P与对角阵A;若不能,请说明理由.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
已知正负惯性指数均为1的二次型xTAx经过合同变换x=Py化为yTBy,其中矩阵B=,则a=_______.
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________
设总体X服从正态分布N(μ,1),X1,X2,…,X9是取自总体X的简单随机样本,要在显著性水平a=0.05下检验H0:μ=μ0=0,H1:μ≠0,如果选取拒绝域R={≥c}.(Ⅰ)求C的值;(Ⅱ)若样本观测值的均值
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为
随机试题
精索
文字处理软件是一种计算机系统软件,实现文字的电子化,对文字进行编辑、排版和打印。()
简述政策性金融机构的含义。
直丝弓矫治器如何清除第一序列弯曲
异形淋巴细胞的常见病因是
(2009)下述钢筋混凝土柱的箍筋作用的叙述中,不对的是()。
风险管理是基金公司经营管理的重要组成部分,以下表述符合风险管理全面性原则要求的是()。[2017年11月真题]Ⅰ.公司应建立具体的风险控制指标体系Ⅱ.风险控制必须覆盖公司的各项业务Ⅲ.风险控制必须覆盖公司的
关于政府债券论述正确的是( )。
根据我国选举法的规定,享有选举权的基本条件是()。
A、Theymustpayoffthetuitionfortheireducation.B、Theymusthavethemilitarytraining.C、Theymusttakepartincollegeco
最新回复
(
0
)