首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形; (2)求矩阵A.
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O. (1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形; (2)求矩阵A.
admin
2019-08-23
61
问题
设二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX,tr(A)=1,又B=
且AB=O.
(1)求正交矩阵Q,使得在正交变换X=QY下二次型化为标准形;
(2)求矩阵A.
选项
答案
(1)由AB=O得A[*]=0,A[*]=0,即α
1
=[*],α
2
=[*]为λ=0的两个线性无关的特征向量,从而λ=0为至少二重特征值,又由tr(A)=1得λ
3
=1, 即λ
1
=λ
2
=0,λ
3
=1. 令λ
3
=1对应的特征向量为α
3
=[*], 因为A
T
=A,所以[*] 解得λ
3
=1对应的线性无关的特征向量为α
3
=[*], 令[*] 所求的正交矩阵为Q=[*] 且X
T
AX[*]y
3
2
. (2)由Q
T
AQ=[*]得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fbA4777K
0
考研数学二
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
求
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=______。
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。[img][/img]求容器的容积;
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求矩阵A。
∫0xsin(x一t)2dt=______。
在曲线y=x2(0≤x≤1)上取一点(t,t2)(0<t<1),设A1是由曲线y=x2(0≤x≤1),直线y=t2和x=0所围成图形的面积;A2是由曲线y=x2(0≤x≤1),直线y=t2和x=1所围成图形的面积,则t取______时,A=A1+A2取最小
求微分方程满足y(-2)=0并且在定义的区间上可导的特解y(x),并求它的定义区间.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
求f(x,y,z)=x+y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
随机试题
过量摄入下列哪种维生素可以引起蓄积中毒
患者,男,48岁。两乳内发现疼痛性肿物1周。检查:肿物大小约3cm×3cm×1cm,质地中等,有压痛,位于乳晕中央,界限清楚,可移动。应首先考虑的是()
关于促胃肠动力药的不良反应,说法正确的是
实行政府指导价的工程设计收费,其基准价根据《工程勘察设计收费标准》计算,浮动幅度为上下()。
下列针对防范土方开挖过程中的塌方风险而采取的措施,属于风险转移对策的是()。
(2011年)1950年颁柿的《全国税政实施要则》中设置但没有实际征收的税种有()。
根据《幼儿园教育指导纲要(试行)》规定,幼儿园体育的重要目标是()
A、 B、 C、 D、 A左边四个图形可以拼合成如下图形:因此,本题选A。
某公司有38名男员工,27名女员工。现要参加集团组织的羽毛球比赛,如采取自由报名的形式,至少有多少名员工报名才能保证一定能从报名者中选出男女选手各8名参赛?
WorldExpoisthelargestthemeexhibitionwheretheorganizerandparticipantscancommunicateandpromotethespecificconcept
最新回复
(
0
)