首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:当0<a<b<π时,bsin b+2cos b+πb>asin a+2cos a+πa.
证明:当0<a<b<π时,bsin b+2cos b+πb>asin a+2cos a+πa.
admin
2018-09-20
51
问题
证明:当0<a<b<π时,bsin b+2cos b+πb>asin a+2cos a+πa.
选项
答案
令F(x)=xsin x+2cos x+πx,只需证明F(x)在(0,π)上单调递增. F’(x)=sin x+xcosx一2sin x+π=π+xcosx—sin x, 由此式很难确定F’(x)在(0,π)上的符号,但由 F”(x)=一xsin x<0,x∈(0,π), 可知函数F’(x)在(0,π)上单调递减,又F’(π)=0,所以F’(x)>0,x∈(0,π),于是F(b)>F(a),即 bsin b+2cos b+πb>asin a+2cos a+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/fjW4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数为f(x)=,则E(X)=________,D(X)=________.
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)==________.注解(1)当0<P(B)<1时,P(A|B)=P(A|B)的充分必要条件是A,B独立;(2)A,B独立的充分必要条件是事件A,B、A,B、A,B任意一对相
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn一1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=αk(k=1,2,3,4).证明:当n充分大时,随机变量Zn=;近似服从正态分布,并指出其分布参数.
设f’(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1一t)x2]≤tf(x1)+(1一t)f(x2).证明:
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
随机试题
关于肺结核处于稳定期的描述下列哪项是不正确的
患者喘逆剐甚,张口抬肩,鼻翼煽张,呼吸困难,不能平卧,心悸,烦躁不安,面唇青紫,汗出肢冷,脉浮大无根。治宜
男,48岁,反酸、烧心5个月。胃镜检查:反流性食管炎伴溃疡形成。最佳的治疗药物是
乳腺癌好发于
主要用于预防Ⅰ型变态反应所致哮喘的药物是( )。
已知沿海某建设项目废气中SO2的等标排放量是3.0×109,则该项目大气的评价等级为()。
在影响消费者行为的因素中,属于个人因素的有()。
保证幼儿每天睡(),其中午睡一般应达到2小时左右。午睡时间可根据幼儿年龄、季节的变化和个体差异适当减少。
眼过千遍不如手过一遍,是贯彻()原则的体现。
市场失灵的主要表现有()。
最新回复
(
0
)