首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
admin
2018-11-22
89
问题
设线性方程组AX=β有3个不同的解γ
1
,γ
2
,γ
3
,r(A)=n一2,n是未知数个数,则( )正确.
选项
A、对任何数c
1
,c
2
,c
3
,c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解;
B、2γ
1
—3γ
2
+γ
3
是导出组AX=0的解;
C、2γ
1
,γ
2
,γ
3
线性相关;
D、γ
1
一γ
2
,γ
2
一γ
3
是AX=0的基础解系.
答案
B
解析
Aγ
i
=β,因此A(2γ
1
一3γ
2
+γ
3
)=2β-3β+β=0,即2γ
1
—3γ
2
+γ
3
是AX=0的解,(B)正确.
c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解
c
1
+c
2
+c
3
=1,(A)缺少此条件.
当r(A)=n一2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ
1
,γ
2
,γ
3
线性相关.(C)不成立.
γ
1
—γ
2
,γ
2
一γ
3
都是AX=0的解,但从条件得不出它们线性无关,因此(D)不成立.
转载请注明原文地址:https://kaotiyun.com/show/foM4777K
0
考研数学一
相关试题推荐
设g(x)有连续的导数,g(0)=0,g’(0)=a≠0,f(x,y)在点(0,0)的某邻域内连续,则=()
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值A:3的特征向量是________。
计算I=-1|dσ,其中区域D由曲线y=和x轴围成。
设二维随机变量(X,Y)的概率密度为求:P{Y≤1/2|X≤1/2}的值。
设随机变量X服从分布F(n,n),记P1=P{X≥1},P2=P{1/X≤1},则()
求由方程x2+y2+z2-2x+2y-4z-10=0所确定的函数z=z(x,y)的极值。
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明:方程f(x)+f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
假设二维随机变量(X1,X2)的协方差矩阵为,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(φ(2.328)=0.9900)
将第二个方程对t求导并注意y=y(t)得[*]
随机试题
抢救枕大孔疝最有效的紧急措施是()
M型超声心动图心室波群显示的曲线为
A.脾B.腔上囊(泄殖腔囊,法氏囊)C.淋巴结D.扁桃体E.胸腺哺乳动物口、鼻腔内的一些淋巴器官常称为
上前牙开面冠中主要抵抗唇舌向旋转脱位的部分是
固定资产的价值随着使用的磨损程度,逐渐地、部分地转化为收益期间的()。
在西方成熟基金市场中,基金管理费率通常与基金规模成_______,与风险成________。()
大数据是指规模极其巨大,以致很难通过一般软件工具加以获取、管理、处理并整理成为有用资讯的海量数据。其具有大量、高速、多样和价值四个特点,被认为是人类新世纪的“新财富”,价值“堪比石油”,发达国家纷纷将开发利用大数据作为夺取新一轮制高点的重要目标,就是个明证
下列关于股利理论的表述中,正确的是()。
程序流程图中带有箭头的线段表示的是()。
Whatsubjectdoesthemanteachnow?
最新回复
(
0
)