0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b)." />
设f(x)二阶可导,f(0)=0,f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).">设f(x)二阶可导,f(0)=0,f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设f(x)二阶可导,f(0)=0,f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
admin
2015-06-30
51
问题
设f(x)二阶可导,f(0)=0,f"(x)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
选项
答案
不妨设a≤b,由微分中值定理,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),使得 [*] 两式相减得f(a+b)-f(a)-f(b)=[f’(ξ
2
)-f’(ξ
1
)]a. 因为f"(x)>0,所以f’(x)单调增加,而ξ
1
<ξ
2
,所以f’(ξ
1
)<f’(ξ
2
), 故f(a+b)-f(a)-f(b)=[f’(ξ
2
)-f’(ξ
1
)]a>0,即 f(a+6)>f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/fr34777K
0
考研数学二
相关试题推荐
一袋中有6个正品4个次品,按下列方式抽样:每次抽取1个,取后放回,共取n(n≤10)次,其中次品个数记为X;一次性取出n(n≤10)个,其中次品个数记为Y,则下列结论正确的是()。
函数z=f(x,y)的全增量△z=(2x-3)△x+(2y+4)△y+且f(0,0)=0.求z在x2+y2=25上的最值。
设α是n维单位列向量,A=E-αT.证明:r(A)<n.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明:PQ可逆的充分必要条件是αTA-1α≠b.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
由题设,积分区域D如右图阴影所示,其在D1为辅助性半圆形区域,[*]
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点共扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
随机试题
Oneofthemostimportantfeaturesthatdistinguishesreadingfromlisteningisthenatureoftheaudience.【C1】______thewriter
肿瘤流行病学的研究目的是
A.卡泊芬净B.两性霉素BC.氟康唑D.灰黄霉素E.特比萘芬多烯类抗真菌药()。
会计档案的定期保管期限不包括()。
下列事件不符合科学依据的是()。
(1)原因很简单,会做生意的人不会去关注和解决社会问题,而真正帮助弱势群体做社会服务的人又缺乏经商的观念、能力和技巧(2)在这个背景之下,香港开办社会企业的往往不是社区里的个人,而是成熟的社会服务机构(3)因此社会企业在香港就像是机构的附属一样,缺乏创
马王堆汉墓帛画描绘的主题思想是()。
资本的有机构成是()。
领导让你和小李共同举办晚会,但是小李在上次的晚会组织过程中犯了错误,领导对小李印象不佳,小李也不配合你的工作,你怎么做小李的工作?
Ifeelthatwemustrespectthispointofviewandaccepttheconvictionofthemanypeoplewhoholdit,becausethatishowthe
最新回复
(
0
)