首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
admin
2017-08-07
39
问题
设A是n阶非零实矩阵(n>2),并且A
T
=A*,证明A是正交矩阵.
选项
答案
AA
T
=AA*=|A|E,因此只用证明|A|=1,就可由定义得出A是正交矩阵. 由于A≠0,有非零元素,设a
ij
≠0.则AA
T
的(i,i)位元素|A|=a
i1
2
+a
i2
2
+…+a
ij
2
+…+a
in
2
>0,从而AA
T
≠0. 对等式AA
T
=|A|E,两边取行列式,得|A|
2
=|A|
n
,即|A|
n-2
=1.又由|A|>0,得出|A|=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/fzr4777K
0
考研数学一
相关试题推荐
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设f(x)为[0,1]上的单调增加的连续函数,证明
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记:(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
(2003年试题,二)设向量组I:α1,α2……αs可由向量组Ⅱ:β1β2……βs线性表示,则().
(2006年试题,20)已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩rA=2;
随机试题
1岁半小儿,1周前出过皮疹,现在皮疹已消退,皮肤可见棕色色素沉着,1天前咳嗽、气促、发热,肺部有固定中、细湿哕音。下列处理中哪项是错误的
一患儿8月,诊断为佝偻病活动期,正在治疗时,患儿出现发热,咳嗽。且肺部听诊闻及中小水泡音,此时选择哪种方法治疗佝偻病更好
A.结核性关节炎B.银屑病关节炎C.类风湿关节炎D.痛风性关节炎E.骨性关节炎属于血清阴性脊柱关节病的是
A.主动一被动型B.共同参与型C.指导一合作型D.服从型E.主动型医生在与慢性病患者的交往中.医患关系中最理想的模式是
患者,男,65岁。神志痴呆,表情淡漠,举止失常,面色晦滞,胸闷泛恶,舌苔白腻,脉滑。其病机是
属于莨菪烷类生物碱母核的是
脾肿大最显著的疾病是()
期末余额一般在借方的账户是()。
流程性材料通常是有形产品,其量具有()的特性。
ClassOnewasdoingasurveyoffavouritedrinks.Herearetheresultsofonegroup:PaulandJudyliketea,squashandcola.Pe
最新回复
(
0
)