首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经初等行变换化为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经初等行变换化为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2019-09-27
19
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经初等行变换化为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选C.
转载请注明原文地址:https://kaotiyun.com/show/g1S4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若C=,则|C|=
设A,B,A+B,A-1+B-1均为n阶可逆矩阵,则(A-1+B-1)-1等于
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设α1,α2,α3,α4,β都是四维列向量,A﹦(α1,α2,α3,α4),非齐次线性方程组Ax﹦β有通解kξ﹢η﹦Jk(2,1,0,-1)T﹢(3,-1,2,1)T,其中k为任意常数,则下列关系式中不正确的是()
设随机变量X和Y分分别服从,已知P{X﹦0,Y﹦0}﹦。(I)求(X,Y)的联合分布律;(Ⅱ)求X和Y的相关系数;(Ⅲ)求P{X﹦1|X2﹢Y2﹦1}。
设,X是三阶矩阵,求当a为何值时,方程AX-B﹦BX无解;当a为何值时,方程AX-B﹦BX有解,有解时,求出全部解。
对任意的x,y有将f(x,y)变换成g(u,v),试求满足﹦u2﹢v2的常数a,b。
随机试题
关于能力,下列说法正确的是()。
首次使用“政治经济学”一词的是()
下图所示对称结构只有水平梁受力。()
一青年农民,32岁,吸烟史8年,每天10支左右,否认慢性咳嗽、咳痰史。近1年来出现间断低热,伴咳嗽、憋气,无咯血及盗汗,胸片示双肺中下野弥漫性、细小、边缘模糊的结节状阴影。体检:无杵状指,呼吸频率16次/分。如果患者曾养鸽子两年,纤维支气管镜活检发现肺
存货清查中,盘盈的存货,若不是发货方多发的,应()。
伊斯兰敦最基本的经典是()。
,()
定义一个函数名为fun,返回值为int,没有参数的纯虚函数的定义是______。
—MayIopen______bag,Madam?—Ofcourse,butit’sfullof______dirtyclothes.
A、Becausewomendomuchworkthanmen.B、Becausepeoplethinkwomenweakerthanmen.C、Becausesportiseasierformenthanfor
最新回复
(
0
)