首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
admin
2017-07-28
82
问题
设4阶矩阵A=(α,γ
1
,γ
2
,γ
3
),B=(β,γ
1
,γ
2
,γ
3
),|A|=2,|B|=3,求|A+B|.
选项
答案
A+B=(α+β,2γ
1
,2γ
2
,2γ
3
),(注意这里是矩阵的加法,因此对应列向量都相加) |A+B|=|α+β,2γ
1
,2γ
2
,2γ
3
|=8|α+β,γ
1
,γ
2
,γ
3
| =8(|α,γ
1
,γ
2
,γ
3
|+|β,γ
1
,γ
2
,γ
3
|) =8(2+3)=40.
解析
转载请注明原文地址:https://kaotiyun.com/show/g7u4777K
0
考研数学一
相关试题推荐
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间7’的概率密度f(t)、数学期望和方差.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是().
(2010年试题,19)设P为椭圆面S:x2+y2+z2一yz=1上的动点,若S在点P处的切平面与xOy平面垂直,求点P的轨迹C,并计算曲线积分其中∑是椭球面S位于曲线C上方的部分.
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
已知(X,Y)为一个二维随机变量,X1=X+2Y,X2=X一2Y(X1,X2)的概率密度为f(x1,x2)分别求出X和Y的密度函数;
设则f(x)在点x=0处
如果函数f(x)的定义域为(-1,0),求函数f(x2-1)的定义域.
设f(x)在x=0的邻域内有定义,f(0)=1,且,则f(x)在x=0处().
随机试题
(1)ThelibraryatWoodgrovePrimarySchoolhasbeenturnedintoa"Maker-Space".Afterregularlessonsendataround2p.m.,pu
巴金的《激流三部曲》是指()。
以下哪些物质不可增加透皮吸收性?()
甲(18岁)上山打猎,误以为乙是野猪,开枪射击打死了乙。检察院以过失杀人罪向法院提起公诉,一审法院经审理认定甲犯过失杀人罪,判处有期徒刑3年,甲不服上诉,二审法院维持了一审判决。服刑期间,甲父一直申诉,2年后,人民法院经再审认定甲射杀乙纯属意外事件,而非过
在某工程网络计划中,已知工作M的总时差和自由时差分别为4天和2天,工程师检查实际进度时发现,该工作的持续时间延长了3天,说明此工作M的实际进度()。
下列各项中,不属于销售预算编制内容的是()。
甲公司的分公司在其经营范围内以自己的名义对外签订一份货物买卖合同。根据《公司法》的规定,下列关于该合同的效力及其责任承担的表述中,正确的是()。
中国元素被洋品牌生硬使用,有多方面的原因。如生肖、福禄寿喜、工笔画等传统中国元素,背后的文化底蕴乃至民族情感非常深厚,已经不是简单的符号,已融人普通百姓日常生活当中。在未能深入了解中国文化的状况下,国外设计师们仅仅使用表面的符号,结果可能适得其反,注定打动
在数据库技术中,实体集之间的联系可以是一对一或一对多或多对多的,那么“学生”和“可选课程”的联系为【】
Anyonewhohasspenttimewithchildrenisawareofthedifferenceinthewayboysandgirlsrespondto______situations.
最新回复
(
0
)