首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
admin
2013-12-27
57
问题
(1998年试题,十一)设A是n阶矩阵,若存在正整数k,使线性方程组A
k
X=0有解向量α,且A
k-1
α≠0.证明:向量组α,Aα,…,A
k-1
α是线性无关的.
选项
答案
通常证明向量组线性无关的方法是按照定义,即设常数c
1
,c
2
,…,c
k
,使得c
1
α+c
2
Aα+…+c
k
A
k-1
α=0(1)如能证明要使(1)成立,则c
1
,c
2
,…,c
k
全为0即可.由题设已知A
k
=0,且A
k-1
α≠0,则用A
k-1
左乘(1)→c
1
A
k-1
α=0,从而c
1
=0,则(1)式变成c
2
Aα+…+c
k
A
k-1
α=0(2)同理用A
k-1
左乘(2)→c
2
A
k-1
α=0,从而c
2
=0.余下以此类推,可证得c
3
=c
4
=…=c
k
=0.因此向量组α,Aα,…,A
k-1
α线性无关.
解析
涉及到一组抽象向量组的线性相关性的证明,一般可采用定义来证明.
转载请注明原文地址:https://kaotiyun.com/show/uC54777K
0
考研数学一
相关试题推荐
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
设A,B为满足AB=O的任意两个非零矩阵,则必有()
已知向量组α1,α2,α3,α4线性无关,则向量组()
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设x≥0,证明.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算
设矩阵求m、n的值及满足AB=C的所有矩阵B.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,-2,3)T+(1,2,-1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
随机试题
2019年2月,A地块使用权人甲公司与B地块使用权人乙公司约定,由乙公司在B地块上修路,供甲公司通行之用,甲公司按约定向乙公司支付费用。同年4月,甲公司将A地块过户给丙公司。7月,乙公司将B地块过户给不知上述情形的丁公司。对此,下列表述正确的是(
与干扰素诱导的抗病毒蛋白作用机制无关的是
下列容易引起老年人蓄积中毒的是
下列指数中,可用来评价证券组成优劣的是()
某企业只生产和销售一种产品,并且只耗用一种原材料。目前正在着手编制2016年1月份的现金收支计划。有关资料如下:(1)月初现金余额为8000元;(2)月初有息负债余额为12000元,年利率为4%,按月支付利息;(3)月初应收账款为4000元,预计月内
太极拳的基本动作不包括()。
Iwas______thepointoftelephoninghimwhenhisletterarrived.
∫[(e3x+ex)/(e4x-10e2x+1)]dx.
A、Wewishtohideourindifferencetotheirmisfortune.B、Wesimplycannothelpreactinginstinctivelythatway.C、Wethinkits
Howmenfirstlearnedtoinventwordsisunknown;inotherwords,theoriginoflanguageisa【C1】______.Allwereallyknowis
最新回复
(
0
)