首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)若A可逆且A~B,证明:A*~B*; (2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
(1)若A可逆且A~B,证明:A*~B*; (2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
admin
2017-08-31
31
问题
(1)若A可逆且A~B,证明:A
*
~B
*
;
(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
选项
答案
(1)因为A可逆且A~B所以B可逆,A,B的特征值相同且|A|=|B|. 因为A~B,所以存在可逆矩阵P,使得P
-1
AP=B, 而A
*
=|A|A
-1
,B
*
=|B|
-1
, 于是由P
-1
AP=B,得(P
-1
AP)
-1
=B
-1
,即P
-1
A
-1
P=B
-1
, 故P
-1
|A|A
-1
P=|A|B
-1
或P
-1
A
*
P=B
*
,于是A
*
~B
*
. (2)因为A~B,所以存在可逆阵P,使得P
-1
AP=B,即AP=PB, 于是AP=PBPP
-1
=P(BP)P
-1
,故AP~BP.
解析
转载请注明原文地址:https://kaotiyun.com/show/gGr4777K
0
考研数学一
相关试题推荐
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β不能由α1,α2,α3线性表出?
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
设且A~B.求a;
设且g(x)具有二阶连续导数,且g(0)=1,g’(0)=-1。讨论f’(x)在(-∞,+∞)上的连续性。
随机试题
神思恍惚,心悸易惊,善悲欲哭,肢体困乏,饮食锐减,舌淡苔薄白脉沉细者,其治法是)(2011年第58题)
PT燃油系统中取消了()油管。
A.抑制甲状腺素合成B.抑制甲状腺素释放C.抑制甲状腺激素的外周作用D.破坏甲状腺滤泡细胞普萘洛尔
在信息科学中,能够计数的离散量称为
被派遣劳动者应当与劳务派遣单位订立()。
下列措施中,不属于王安石变法的是:
某超市销售双层锅和三层锅两种蒸锅套装,其中双层锅需要2层锅身和1个锅盖,三层锅需要3层锅身和1个锅盖,并且每卖一个双层锅获利20元,每卖一个三层锅获利30元,现有7层锅身和4个锅盖来组合双层锅和三层锅两种蒸锅套装,那么最大获利为()。
论述了解不同类型运动的疲劳特点对运动实践的意义。
prototext
A、Whatthemanbookedisasingleroom.B、Themanandhiswifewanttocheckout.C、Asingleroomcan’tbechangedforadouble.
最新回复
(
0
)