首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=______.
设A为三阶实对称矩阵,ξ1=为方程组AX=0的解,ξ2=为方程组(2E—A)X=0的一个解,|E+A|=0,则A=______.
admin
2014-11-26
76
问题
设A为三阶实对称矩阵,ξ
1
=
为方程组AX=0的解,ξ
2
=
为方程组(2E—A)X=0的一个解,|E+A|=0,则A=______.
选项
答案
[*]
解析
显然
为A的特征向量,其对应的特征值分别为λ
1
=0,λ
2
=2,因为A为实对称阵,所以ξ
1
T
ξ
2
=k
2
一2k+1=0,解得k=1,于是
又因为|E+A|=0,所以λ
3
=一1为A的特征值,令λ
3
=一1对应的特征向量为
转载请注明原文地址:https://kaotiyun.com/show/ge54777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T是方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆.设,其中a1b1+a2b2+a3b3=0,证明W可逆,并求W-1.
已知曲线y=y(x)经过点(1,e—1),且在点(x,y)处的切线在y轴上的截距为xy,求该曲线方程的表达式.
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
求一条凹曲线,已知其上任意一点处的曲率k=,其中α为该曲线在相应点处的切线的倾斜角,且该曲线在点(1,1)处的切线为水平方向.
设函数y(x)(x≥0)二阶可导且y’(z)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在且非零,证明:存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f’(η)ln2.
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:(X1,X2)的分布;
求,其中∑为下半球面∑:的上侧,a为大于零的常数.
设u=u(x,y,z)是由方程ez+u-xy-yz-zu=0确定的可微函数,求u=u(x,y,z)在点P(1,1,0)处方向导数的最小值.
随机试题
坝式防护分为()四种形式.
软件测试中的功能测试是()
A果糖二磷酸酶-1B6-磷酸果糖激酶CHMGCoA还原酶D磷酸化酶EHMGCoA合成酶糖酵解途径中的关键酶是答案:()
弥散性血管内凝血(DIC):
某市存在大面积地面沉降,其地下水位下降平均速率为1m/年,现地下水位在地面下5m处,主要地层结构及参数见表11.5.1。按分层总和法计算。试问:今后15年内地面总沉降量(mm)最接近下列()项。
体育与健康基础知识课堂教学中应注意的问题。
为什么要建设社会主义核心价值体系?
已知a1=1,an+1=,则a2,a3,a4,a5的值分别为_______,由此猜想an=________.
A、 B、 C、 C原句是由于下雨所以明天不能去游泳。而图片[A]画的是在刮风,图片[B]画的是阳光灿烂的日子,图片[C]是下雨天,所以,应该选[C]。
InMarchIsraellaunchedamajor______ofLebanon,seizingabout10percentoftheland.
最新回复
(
0
)