首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
admin
2018-04-18
78
问题
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
选项
答案
由已知∫
0
a
f(x)dx=∫
0
a
f(x)d(x一a) =[(x一a)f(x)]|
0
a
一∫
0
a
(x一a)f’(x)dx =af(0)一∫
0
a
(x一a)f’(x)dx 因为f’(x)连续,所以f’(x)在[0,a]上存在最小值m和最大值M,则 m(a一x)≤(a—x)f’(x)≤M(a一x), 故[*],再由介值定理可知,至少存在一点ξ∈[0,a],使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gjk4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1、1的特征向量,向量α3满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3),求P-1AP.
已知λ1=6,λ2=λ3=3是实对称矩阵A的三个特征值.且对应于λ2=λ3=3的特征向量为α2=(-1,0,1)T,α3=(1,-2,1)T,求A对应于λ1=6的特征向量及矩阵A.
若0<x1<x2<2,证明
设α1,α2,α3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设(X,Y)是二维离散型随机向量,其分布为P(X=xi,Y=yj}=pij(i=1,2,…,m;j=1,2,…,n),称(pij)m×n为联合概率矩阵.证明:X与Y相互独立的充要条件是(pij)m×n的秩为1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
试确定参数a,b及特征向量ξ所对应的特征值;
证明:|arctanx-arctany|≤|x-y|
随机试题
村民自治乡村治理的主要特点有()。
决定单纯扩散方向和流量的驱动力是【】
患者,女,40岁,因“左耳听力下降、耳鸣两月余”就诊,检查见左耳鼓膜可见液平。经地方医院反复抗感染治疗效果不佳。你认为最可能的诊断是
一般情况下,公司通过发放股票股利增加普通股股本,普通股本增加前后,资本成本不变。( )
A会计师事务所审计了甲公司2012年度财务报表,并出具了保留意见的审计报告。负责甲公司外勤审计工作的B注册会计师于2013年5月离职加入X会计师事务所,转所手续至2014年2月办理完毕。2014年1月,甲公司决定改聘X会计师事务所审计其2013年度财务报表
小黄是电脑修理员,欠小于800元钱,同时小黄为小于修理电脑,应得报酬800元,这两笔债务同时到期,则小黄、小于之间的债务可以()。
玄学思想是魏晋时期流行的一种哲学思潮。它是以()为主,又糅合了儒家思想而产生的一种新的学说。魏晋玄学的早期代表有何晏和()。
y=arctan2(1+x)/(1-x),则=________.
ThereisgrowinginterestinEastJapanRailwayCo.ltd.,oneofthesixcompanies,createdoutoftheprivatizednationalrail
A、Becheerfulevenwhenyouareprovoked.B、Neverseemtobenervous.C、Trytowindebatingpoints.D、Neversay"Idon’tknow."
最新回复
(
0
)