首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
admin
2021-12-09
103
问题
设三阶矩阵A的秩为2,a
1
a
2
a
3
是非齐次线性方程组AX=b的三个解,且2a
2
一a
1
=(一2,一1,2)
T
,a
1
+2a
2
一2a
3
=(2,一1,4)
T
,则方程组AX=b的通解为( )•
选项
A、X=(一2,一1,2)
T
+k(2,0,1)
T
B、X=(2,一1,4)
T
+k(0,一2,6)
T
C、X=(2,0,1)
T
+k(一2,一1,2)
T
D、X=(一2,一1,2)
T
+k(0,一2,6)
T
答案
A
解析
∵(2a
2
一a
1
)一(a
1
+2a
2
一2a
3
)=2(a
3
一a
1
)=(一4,0,一2)
T
∴a
1
一a
3
=(2,0,1)
T
∵a
1
,a
3
是AX=b的解.
∴a
1
一a
3
是AX=0的解.
由三阶矩阵A的秩为2知方程组AX=0的基础解系只含一个向量,所以AX=0通解为k(2,0,1)
T
.
又∵A(2a
2
一a
1
)=2Aa
2
一Aa
1
=2b一b=b
∴2a
2
一a
1
是AX=b的解.故AX=b的通解为A.
转载请注明原文地址:https://kaotiyun.com/show/gsR4777K
0
考研数学三
相关试题推荐
设线性无关的函数y1(x),y2(x),y3(x)均是方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该方程的通解是()
n阶矩阵A具有n个线性无关的特征向量是A与对角矩阵相似的()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设A、B为满足AB=O的任意两个非零矩阵,则必有【】
下列矩阵中,正定矩阵是()
随机试题
阅读下列案例,并回答问题。年轻的黄老师每次教完生字后,总是让学生回去把每个生字抄10遍,准备第二天听写,但学生的生字听写成绩总是不理想。黄老师想,肯定是抄写不够,又让学生每个生字抄20遍甚至30遍,但学生的听写成绩仍没有明显提高。黄老师逐渐意识到,学生学习
下列哪项属于子宫内膜的周期性变化
可确诊慢性淋巴细胞白血病的方法是
(抗高血压药物)A、缬沙坦B、吲达帕胺C、美托洛尔D、尼卡地平E、赖诺普利属于血管紧张素转换酶抑制剂的是
2014年下半年,实行标准工时制的甲公司在劳动用工方面发生下列事实:(1)9月5日已累计工作6年且本年度从未请假的杨某向公司提出年休假申请。(2)因工作需要,公司安排范某在国庆期间加班4天,其中占用法定休假日3天,占用周末休息日1天。范某日工资为200
在小学教学评价中,衡量学校办学水平的关键指标是()。
货币制度(浙江财经大学2012真题;东南大学2012真题;华南理工大学2011真题)
Ifyouweretoexaminethebirthcertificatesofeverysoccerplayerin2006’sWorldCuptournament,youwouldmostlikelyfind
Readfivestudents’talksabouttravelingaroundEuropeusinganInter-Railticket.Theticketallowspeopleundertheageoft
Thefactthattheworld’scitiesaregettingmoreandmorecrowdedisawell-documenteddemographicfact.CitiessuchasTokyo
最新回复
(
0
)