首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
设三阶矩阵A的秩为2,a1a2a3是非齐次线性方程组AX=b的三个解,且2a2一a1=(一2,一1,2)T,a1+2a2一2a3=(2,一1,4)T,则方程组AX=b的通解为( )•
admin
2021-12-09
92
问题
设三阶矩阵A的秩为2,a
1
a
2
a
3
是非齐次线性方程组AX=b的三个解,且2a
2
一a
1
=(一2,一1,2)
T
,a
1
+2a
2
一2a
3
=(2,一1,4)
T
,则方程组AX=b的通解为( )•
选项
A、X=(一2,一1,2)
T
+k(2,0,1)
T
B、X=(2,一1,4)
T
+k(0,一2,6)
T
C、X=(2,0,1)
T
+k(一2,一1,2)
T
D、X=(一2,一1,2)
T
+k(0,一2,6)
T
答案
A
解析
∵(2a
2
一a
1
)一(a
1
+2a
2
一2a
3
)=2(a
3
一a
1
)=(一4,0,一2)
T
∴a
1
一a
3
=(2,0,1)
T
∵a
1
,a
3
是AX=b的解.
∴a
1
一a
3
是AX=0的解.
由三阶矩阵A的秩为2知方程组AX=0的基础解系只含一个向量,所以AX=0通解为k(2,0,1)
T
.
又∵A(2a
2
一a
1
)=2Aa
2
一Aa
1
=2b一b=b
∴2a
2
一a
1
是AX=b的解.故AX=b的通解为A.
转载请注明原文地址:https://kaotiyun.com/show/gsR4777K
0
考研数学三
相关试题推荐
设n阶非奇异矩阵A的列向量为α1,α2,…,αn,n阶矩阵B的列向量为β1,β2,…,βn,若β1=α1+α2,β2=α2+α3,…,βn=αn+α1,则矩阵B的秩().
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组
设A是n阶实对称矩阵,将A的第i列和第j列对换得到B,再将B的第i行和第j行对换得到C,则A与C()
已知A是三阶实对称矩阵且不可逆,又知Aα=3α,Aβ=β,其中α=(1,2,3)T,β=(5,1,t)T,则下列命题正确的是().①A必可相似对角化②必有t=一1③γ=(1,16,一11)T必是A的特征向量④
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是
下列矩阵中,正定矩阵是()
随机试题
设y=exsinx,则y’’’=()
男性,62岁。哮证日久,气急难续,咳呛,痰少质黏,口燥咽干,舌红少苔,脉细数者,治宜选用()
在房地产业中,最不具备服务业性质的是()。
《生活垃圾填埋场污染控制标准》除适用于生活垃圾填埋场建设、运行和封场后的维护与管理外,其部分规定也适用于()的建设、运行。
如果个人委托代理人提出异议申请,代理人须提供()。
租赁经营进行租赁的程序包括()。
最近一段时期,有关地震的传言很多。一天晚上,小芳问在院里乘凉的姥姥:“姥姥,他们都说明天要地震了。”姥姥说:“根据我的观察,明天不必然地震。”小芳说:“那您的意思是明天肯定不会地震了。”姥姥说不对,小芳陷入了迷惑。请问以下哪句话与姥姥的意思最为接近?(
近代以来,史学界发展出几种“专门之学”,即简帛学、敦煌学、徽学、黑城学等,主要对象是出土或传世的文书,包括简帛文书、敦煌吐鲁番文书、徽州文书、黑城文书,时间跨度从战国秦汉直至明清。虽然这些研究的对象多是文书,但中国并没有自己的“古文书学”。作者接下来最有可
•Readthearticlebelowaboutamethodoflearninglanguagesaimedatbusinesspeople.•Choosethebestwordtofilleachgap
There’sNoPlaceLikeHome[A]Onalmostanynightoftheweek,Churchill’sRestaurantishopping.The10-year-oldhotspotinR
最新回复
(
0
)