首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
admin
2019-03-12
73
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,又g(x)在[a,b]上连续,求证:存在ξ∈(a,b)使得f’(ξ)=g(ξ)f(ξ).
选项
答案
设∫g(x)dx是g(x)的某个原函数,并令R(x)=e
-∫g(x)dx
,作辅助函数F(x)=R(x)f(x),对F(x)在[a,b]上用罗尔定理,即知本题结论成立.
解析
注意对任何ξ∈(a,b),
f’(ξ)=g(ξ)f(ξ)
f’(ξ)-g(ξ)f(ξ)=0
[f’(x)-g(x)f(x)]|
x=ξ
=0
[R(x)f’(x)-R(x)g(x)f(x)]|
x=ξ
=0
[R(x)f(x)]’|
x=ξ
=0,
其中R(x)是在[a.b]上连续,在(a,b)内可导,而且当x∈(a,b)时满足如下条件的任一函数:
R’(x)=-R(x)g(x),又R(x)≠0.
转载请注明原文地址:https://kaotiyun.com/show/guP4777K
0
考研数学三
相关试题推荐
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量求方差.
设X一N(μ,σ2),其中μ和σ2(σ>0)均为未知参数,从总体X中抽取样本X1,X2,…,Xn样本均值为,则未知参数μ和σ2的矩估计量分别为.
已知X,Y为随机变量且,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=________,P(B)=________,P(C)=________.
设随机变量X的绝对值不大于1,且P{X=0}=,已知当X≠0时,X在其他取值范围内服从均匀分布,求X的分布函数F(x).
设χOy平面上有正方形D=((χ,y)|0≤χ≤1,0≤y≤1}及直线l:χ+y=t(t≥0),若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
就常数a的不同取值情况,讨论方程χe-χ=a(a>0)的实根.
设随机变量X的概率密度为f(χ)=表示对X的3次独立重复观测中事件{X≤}发生的次数,则P(Y≤2)=().
设随机变量X服从参数为λA的指数分布,令求:(I)P{X+Y=0};(Ⅱ)随机变量Y的分布函数;(Ⅲ)E(Y).
设f(x)连续,且则下列结论正确的是().
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若a[(h)+bf(2h)—f(0)=a(h),试求a,b的值。
随机试题
企业对市场机遇与挑战、内部资源能力的优势和劣势所进行的全面的、前瞻性的思考和认识是()
下列作者属于文学研究会成员的是()
简述量变和质变的关系。
养阴清肺汤中少佐薄荷的主要用意是
下述18F-FDG显像方法正确的是
乳腺摄影X线的特点是
A.多有眶下区弥漫性水肿B.以下颌角为中心的咬肌区红肿伴明显张口受限C.先有牙痛史,继而出现张口受限D.多出现颌下三角区的红肿E.多出现颌下、口底广泛水肿翼下颌间隙感染
下列关于明确房地产估价时点的表述中,正确的有()。
某地下工程施工合同约定,计划2月份开挖160000m3,合同单价均为85元/m3。到2月底,经确认实际开挖土方180000m3,实际单价为72元/m3,则该工程的以工作量表示的进度偏差(SV)为()万元。
A、Paymentorderwilltakefewerdaysthantelegraphictransfer.B、Paymentorderwilltakemoredaysthantelegraphictransfer.C
最新回复
(
0
)