首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有二阶线性微分方程 (Ⅰ)作自变量替换,把方程变换成y关于t的微分方程. (Ⅱ)求原方程的通解.
设有二阶线性微分方程 (Ⅰ)作自变量替换,把方程变换成y关于t的微分方程. (Ⅱ)求原方程的通解.
admin
2020-03-16
45
问题
设有二阶线性微分方程
(Ⅰ)作自变量替换
,把方程变换成y关于t的微分方程.
(Ⅱ)求原方程的通解.
选项
答案
(Ⅰ)先求 [*] 再将①求导,得 [*] 将①代入 [*] 将②,③代入原方程得 [*] (Ⅱ)题(Ⅰ)已把原方程转化为④,故只需求解这个二阶线性常系数非齐次方程,它的相应特征方程λ
2
+2λ+1=0,有重根λ=-1.非齐次方程可设特解y
*
=Asint+Boost,代入④得 -(Asint+Boost)+2(Acost-Bsint)+(Asint+Bcost)=2sint 即 Acost-Bsint=sint 比较系数得A=0,B=-1,即y
*
(t)=-cost.因此④的通解为 y=(c
1
+c
2
t)e
-t
-cost 原方程的通解为y=(c
1
+c
2
arcsinx)e
-arcsinx
-[*],c
1
,c
2
为[*]常数. 其中t=arcsinx,cost=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hE84777K
0
考研数学二
相关试题推荐
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)-f(0)=o(h),试求a,b的值.
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(χg(y),χ+y)的二阶混合偏导数在点(1,1)处的值.
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
求函数z=x2+2y2-x2y2在D={(x,y)|x2+y2≤4,y≥0}上的最小值与最大值.
设3阶方阵A的特征值为2,-1,0,对应的特征向量分别为α1,α2,α3,若B=A3-2A2+4E,试求B-1的特征值与特征向量.
设函数f(x)=并记F(x)=∫0xf(t)dt(0≤x≤2),试求F(x)及f(x)dx.
随机试题
承载板法测定土基回弹模量的试验方法,预压值采用(),稳压时间为(),使承载板与土基紧密接触。
12岁,男性,胸片示左下肺3cm肿块,肿块表面光滑、质地均匀,CT平扫为软组织密度,CT增强明显强化,最可能的诊断是
下列药物中,主入肝经气分,善散肝气之郁结,可平肝气之横逆,为疏肝解郁、行气止痛之要药的是
下列各项中,符合车船税征收管理规定的有()。
下列关于个人住房贷款发展历程的说法,正确的有()。
区分人类历史上不同社会形态的根本标志是()。
2010年4月,某市劳动行政部门在对甲公司进行例行检查时,发现甲公司存在下列问题:(1)有8年工作年限的张某提出年休假5天,甲公司认为,由于张某2009年请病假累计已达40天,拒绝了张某的请求。(2)2009年国庆节,甲公司安排王某(日工资
确定我国经济体制改革目标的核心问题是正确认识和处理()。
生命的定义就是拥有明天。它不像“未来”那么过于遥远与空洞。它就守候在门外。走出了今天便进入了全新的明天。明天会是怎样呢?当然,多半还要看你自己的,你快乐它就是快乐的一天,你无聊它就是无聊的一天,你匆忙它就是匆忙的一天;如果你静下心来就会发现,你不能改变昨天
Withthousandsofyearsofhistoryandmythology【C1】______,Athens—named【C2】______theolive-tree-lovingAthena(goddesso
最新回复
(
0
)