首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT。
admin
2018-12-29
39
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
。
选项
答案
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2(x
1
,x
2
,x
3
)[*]+(x
1
,x
2
,x
3
)[*] =(x
1
,x
2
,x
3
)(2αα
T
)[*]+(x
1
,x
2
,x
3
)(ββ
T
)[*] =(x
1
,x
2
,x
3
)(2αα
T
+ββ
T
)[*] 所以二次型f对应的矩阵为2αα
T
+ββ
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/hRM4777K
0
考研数学一
相关试题推荐
求幂级数的收敛域及和函数.
设f(x)是可导的函数,对于任意的实数s、t,有f(s+t)=f(s)+f(t)+2st,且f’(0)=1.求函数f(x)的表达式.
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
设连续型随机变量X的密度函数为Y=ex的数学期望与方差.
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=-1,且分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是求a及λ0的值,并求矩阵A.
设三阶实对称矩阵A的特征值分别为0,1,1,是A的两个不同的特征向量,且A(α1+α2)=α2.求矩阵A;
设周期为2π的函数f(x)=的傅里叶级数为(I)求系数a0,并证明an=0,(n≥1);(Ⅱ)求傅里叶级数的和函数g(x)(-π≤x≤π),及g(2π)的值.
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b一a)[f(a)+f(b)]+∫abf"(x)(x一a)(x一b)dx.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数P.
设f(x)在[a,+∞)上连续,f(a)<0,而f(x)存在且大于零,证明:f(x)在(a,+∞)内至少有一个零点.
随机试题
以群体为对象,以疾病的群体防治为目的的诊断是
一般资料:求助者,女性,47岁,本科学历,外资企业高级职员。案例介绍:求助者三个月前,偶然得知十七岁的女儿谈恋爱了,男友是外来打工者。老师反映,其女儿经常无故缺课,成绩逐步下降。求助者曾经严厉批评女儿,并去找女儿的男友,让他与女儿断绝来往。常为琐事和女儿
会计小刘按照公司王总通过手机QQ发来的信息,将96万元项目款打入指定账号,事后经过两人的交流,小刘得知王总并没有发送该消息,自己很可能遭遇诈骗,便立即报警。对于上述情况,下列说法正确的是()。
读下图,甲、乙表示两个不同的区域,完成问题。若甲表示我国的东部地带、乙表示中西部地带,则沿箭头①方向在区域问调配的是()。
设计理想住宅,应从科技服务于人类出发,以人类的健康幸福与文明发展为核心。按照上述理念进行设计,住宅区里,人与自然和谐相处,树林、溪流、湿地形成有机整体,为人们提供与大自然亲密接触的良好生态环境;采用高科技的毛细管冷暖传递系统调节室内空气,为人们提供恒温、“
水利工程是用于控制和调配自然界的地表水和地下水,达到除害兴利目的而修建的工程。根据上述定义,下列不涉及水利工程的是:
甲、乙两人在同一天就同样的发明创造提交了专利申请,专利局将分别向各申请人通报有关情况,并提出多种可能采用的解决办法。下列说法中,不可能采用__________。
EditorLauratalkswithMr.Brooksabouthisnewbookonrobotics.Asyoulisten,answerthequestionsorcompletethenotesin
A、Shehasn’tsentresumesyet.B、Shehasn’tgotanyrepliesyet.C、Shehasgotsomenewchances.D、Shehasalreadysignedanew
Wehavechosenwhatwebelievetobethefivemostspectacularnaturalwonders--thosethatarethebiggest,longestormostimpr
最新回复
(
0
)