首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ2)。该工程师记录的是n次测量的绝对误差Zi=|Xi—μ|(i=1,2,…,n),利用Z1,Z2,…
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立且均服从正态分布N(μ,σ2)。该工程师记录的是n次测量的绝对误差Zi=|Xi—μ|(i=1,2,…,n),利用Z1,Z2,…
admin
2018-04-11
44
问题
某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X
1
,X
2
,…,X
n
相互独立且均服从正态分布N(μ,σ
2
)。该工程师记录的是n次测量的绝对误差Z
i
=|X
i
—μ|(i=1,2,…,n),利用Z
1
,Z
2
,…,Z
n
估计σ。
(Ⅰ)求Z
i
的概率密度;
(Ⅱ)利用一阶矩求σ的矩估计量;
(Ⅲ)求σ的最大似然估计量。
选项
答案
(Ⅰ)因为X
i
~N(μ,σ
2
),所以Y
i
=X
i
一μ~N(0,σ
2
),则随机变量Y
i
的概率密度为 [*] 设Z
i
的分布函数为F
Zi
(z),则当z<0时,F
Zi
(z)=0; 当z≥0时,F
Zi
(z)=P{Z
i
≤z}=P{|Y
i
|≤z}=P{—z≤Y
i
≤z}=[*] 所以Z
i
的概率密度为 [*] (Ⅲ)设Z
1
,Z
2
,…,Z
n
的观测值为z
1
,z
2
,…,z
n
,则似然函数为 L(z
1
,z
2
,…,z
n
;σ)=[*] 取对数得 [*] 令[*] 故σ的最大似然估计量为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/her4777K
0
考研数学一
相关试题推荐
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设在区间[a,b]上f(x)>0,f’(x)<0,f"(x)>0.令,S2=f(b)(b一a),,则
当x=_________时,函数y=x2x取得极小值.
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设总体X的概率密度函数如下,X1,X2,…,Xn为总体X的样本。判断上题中求出的估计量是否为λ的无偏估计量?
在总体N(1,4)中抽取一容量为5的简单随机样本X1,X2,…,X5,则概率P(min{X1,X2,…,X5}<1)=________。
设X和Y为独立的随机变量,X在区间[0,1]上服从均匀分布,Y的概率密度函数为求随机变量Z=X+Y的分布函数Fz(z)。
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D,求(1)D的面积A;(2)D绕直线x=1所成的旋转体的体积V。
设随机变量X,Y相互独立且均服从正态分布N(0,σ2),求(Ⅰ)Z=的概率密度fZ(z);(Ⅱ)E(Z)和D(Z).
随机试题
_____novelsareallVictorianindate.MostofthemaresetinWessex,thefictionalprimitiveandcruderuralregionwhichis
女性,35岁。腹胀20天伴低热、乏力、夜间盗汗前来就诊。体检:腹部轻度膨隆,腹壁柔韧感。肝、脾未触及,腹部移动性浊音(+)。为明确诊断首选哪项检查
下列说法不正确的是
下列哪种消毒剂属于表面活性剂类
佝偻病性手足搐搦症喉痉挛主要见于
型号为20Sh-19的离心泵属于()离心泵。
资料同上。下列有关乙公司非货币性资产交换的会计处理,不正确的是()。
(2014浙江A类5)传统的超级计算机,强项是处理“计算密集型”的任务,比如预测天气。这只要求按照某个成熟的算法模型,______地算就行了。但在大数据时代,要从海量,特别是缺乏直接相关性的数据中,______出有价值的内容,超级计算机的系统设计需要创新,
如果已知关于x的不等式(a+b)x2+(2a-3b)x>0的解集为(-3,0),那么log6ba2的值等于().
Noah’sFullServiceCarwashinGeyservilleWelcomesyoutotheneighborhood!Forover20years,Noah’shas
最新回复
(
0
)