首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为 (Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
admin
2019-01-23
29
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为
(Ⅱ)有一个基础解系(0,1,1,0)
T
,(-1,2,2,1)
T
.求(Ⅰ)和(Ⅱ)的全部公共解.
选项
答案
由题意知,(Ⅰ)和(Ⅱ)的公共解都必定是(Ⅱ)的解,因此有c
1
η
1
+c
2
η
2
的形式.它又满足(Ⅰ),由此可决定c
1
与c
2
应该满足的条件. 具体计算过程:将c
1
η
1
+c
2
η
2
=(-c
2
,c
1
+2c
2
,c
1
+2c
2
,c
2
)
T
,代入(Ⅰ),得到 [*] 解出c
1
+c
2
=0.即当c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(Ⅰ)的解.于是(Ⅰ)和(Ⅱ)的公共解为: c(η
1
-η
2
),其中c可取任意常数. 设(Ⅰ)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(-1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
。是(Ⅰ)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,-1,0)
T
是(Ⅱ)的一个基础解系.求(Ⅰ)和(Ⅱ)公共解.
解析
转载请注明原文地址:https://kaotiyun.com/show/hrM4777K
0
考研数学一
相关试题推荐
(n—1)x的和函数及定义域是______·
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:ξ∈(a,6)使得
设f(x),g(x)在x=x0某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(x)在点(x0,y0)处相交、相切且有相同曲率的充要条件是:f(x)一g(x)=o((x一x0)2)(x→x0).
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
向直线上掷一随机点,假设随机点落入区间(一∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(一∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x是点得x分,试求得分X的分
设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b,试证:在[a,b]内存在ξ,使得
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
微分方程y’一xe-y+=0的通解为_________.
随机试题
下面正确的是
气血两虚的临床表现为血虚证的临床表现为
下列含有乌头碱的药物有
下面关于行政给付的特征说法正确的有:()
环境影响报告书的( ),要求阐述其编制目的、编制依据及采用的标准。
甲公司、乙公司2017年有关交易或事项如下:(1)1月1日,甲公司向乙公司控股股东丙公司定向增发本公司普通股股票1400万股(每股面值为1元,市价为15元),以取得丙公司持有的乙公司70%股权,实现对乙公司财务和经营政策的控制,股权登记手续于当日办理完毕
根据下面的文字资料回答下列问题。2004年全部工业增加值1044.8亿元,增长17.0%。全部国有工业及年产品销售收入500万元以上的非国有工业企业(简称规模以上工业,下同)增加值595.63亿元,增长22.8%。其中,国有及国有控股企业增加值35
价格需求弹性:指需求对价格变动的反应程度或敏感程度,其大小以系数Ep=需求变动(%)÷价格变动(%)的绝对值来表示。根据上述定义,下面哪一种说法是正确的?()
下列关于乳牙的特点,描述正确的是()。
inderWohnung,es,einSchlafzimmer,einArbeitszimmer,eineKüche,einBad,geben,und
最新回复
(
0
)