首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
曲面S:,平面P:Ax+By+D=0.其中abc≠0,A,B,C不同时为零.讨论并回答下述问题: S是否存在与P平行的切平面,并请推导出存在这种切平面的充要条件. 当存在时,请区分出是存在唯一一个,还是正好两个,还是可以多于两个.
曲面S:,平面P:Ax+By+D=0.其中abc≠0,A,B,C不同时为零.讨论并回答下述问题: S是否存在与P平行的切平面,并请推导出存在这种切平面的充要条件. 当存在时,请区分出是存在唯一一个,还是正好两个,还是可以多于两个.
admin
2019-01-24
32
问题
曲面S:
,平面P:Ax+By+D=0.其中abc≠0,A,B,C不同时为零.讨论并回答下述问题:
S是否存在与P平行的切平面,并请推导出存在这种切平面的充要条件.
当存在时,请区分出是存在唯一一个,还是正好两个,还是可以多于两个.
选项
答案
设切点为Q(x
0
,y
0
,z
0
),于是曲面S在点Q处的法向量为 [*] 又由于曲面S在点Q处的切平面平行于平面P,则有 [*] 在上式中,如果当A,B,C中有为0的项时,则认为对应的分子也为0.于是 x
0
=a
2
At,y
0
=b
2
Bt,z
0
=-c
2
Ct, 因此将点(x
0
,y
0
,z
0
)代入曲面S的方程,得 [*] (a
2
A
2
+b
2
B
2
-c
2
C
2
)t
2
=-1. 则上述方程有解的充要条件是 c
2
C
2
-a
2
A
2
-b
2
B
2
>0. ① 所以当 c
2
C
2
-a
2
A
2
-b
2
B
2
≤0 时,经过点Q不存在与P平行的切平面. 当①式成立时,有 [*] 其中 当[*]时,切点Q为[*],切平面方程为 [*] 化简即为 Ax+By+Cz+k=0. ② 当[*]时,切点Q为[*],切平面方程为 [*] 化简即为 Ax+By+Cz-k=0. ③ 因为k>0,所以k≠-k,所以②与③不是同一张平面,点[*]不在③上,点[*]不在②上. 故结论是:曲面S存在与平面P平行的切平面的充要条件是c
2
C
2
-a
2
A
2
-b
2
B
2
>0.当存在时,必是存在两个不同的切平面与平面P平行.既不存在唯一一个,也不存在多于两个与平面P平行的切平面.
解析
转载请注明原文地址:https://kaotiyun.com/show/hvM4777K
0
考研数学一
相关试题推荐
有一大批产品,其验收方案如下,先做第一次检验,从中任取10件,经检验无次品则接收这批产品,次品数大于2,则拒收;否则做第二次检验.其做法是从中再任取5件,仅当5件无次品时接收这批产品,若产品的次品率为10%,求:这批产品需进行第二次检验且能被接收的概率
10件产品中4件为次品,6件为正品,现抽取2件产品.求第一件为正品,第二件为次品的概率;
证明:当x>0时,arctanx+.
证明:∫0sinnxcosnxdx=2-n∫0sinnxdx.
设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设函数y=y(x)由e2x+y一cos(xy)=e一1确定,则曲线y=y(x)在x=0对应点处的法线方程为_________.
设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,fy’(x,0)=x,则f(x,y)=________.
设A=有三个线性无关的特征向量.求可逆矩阵P,使得P-1AP为对角阵.
求区域Ω的体积V,其中Ω是半球面及旋转抛物面x2+y2=2az所围成.
(2005年)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
随机试题
A.实寒证B.实热证C.虚寒证D.虚热证
患者,女,39岁。因持续上腹痛伴恶心、呕吐3天入院。5年来有胆囊结石病,常有短暂上腹不适症状。B超显示胆囊多发小结石,总胆管宽9mm,其内未见结石,胰腺肿大增厚,周围有积液。查体:体温37.7℃,脉率106次/分,呼吸28次/分,血压132/86mmHg,
急性梗阻性化脓性胆管炎最常见的梗阻因素是
皮肌炎面部的典型皮疹是
处方后记必须签名或盖章的人员包括()。
特种设备制造和安装、改造、重大修理过程监督检验的主体是()。
在平面直角坐标系中,点P(-4,5)关于原点对称的点的坐标为().
无论你是否相信,纵观历史长河,暴力呈现下降趋势。我知道,此论必定遭到质疑、责备,甚至激起愤怒。人们往往倾向于认为我们生活的时代仍然充满暴力,特别是在这个时代,更有媒体推波助澜,有的媒体甚至把“见血的消息放上头版”奉为信条。人类的头脑在估算事件概率时,总是避
下列关于罪数的表述中,正确的是()
overlappingtranslation
最新回复
(
0
)