首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则( ).
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则( ).
admin
2022-04-02
54
问题
设A=(α
1
,α
2
,…,α
m
),其中α
1
,α
2
,…,α
m
是n维列向量,若对于任意不全为零的常数k
1
,k
2
,…,k
m
皆有k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0,则( ).
选项
A、m>n
B、m=n
C、存在m阶可逆阵P,使得AP=
D、若AB=O,则B=O
答案
D
解析
因为对任意不全为零的常数k
1
,k
2
,…,k
m
,有k
1
α
1
+k
2
α
2
+…+k
m
α
≠0,所以向量组α
1
,α
2
,…,α
m
线性无关,即方程组AX=0只有零解,故若AB=0,则B=0,选(D).
转载请注明原文地址:https://kaotiyun.com/show/i2R4777K
0
考研数学三
相关试题推荐
设y=y(x)是由方程x2+y=tan(x—y)所确定且满足y(0)=0,则y"(0)=__________.
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。(Ⅰ)证明矩阵A能相似于对角矩阵;(Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=-1为B的两个特征值,则行列式|A+2AB|=________。
利用柯西审敛原理证明调和级数发散.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
已知方程组有解,证明:方程组无解.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
随机试题
溃疡性结肠炎必有的症状是()
治疗坐骨神经痛应选取的主穴为
下列有关口对口人工呼吸的叙述不正确的是
口服地西泮不能应用于
薄、楔束的功能是
人民法院在审判过程中,如果有被告经依法传唤,无正当理由而拒不到庭的,人民法院可以将其拘传。人民法院依法拘传被告人下列做法哪些不符合刑事诉讼法相关规定?
按照PDCA循环开展项目质量管理工作时,P阶段的工作内容是()。
货物查验结束后,报关员在阅读“海关进出境货物查验记录单”时,应注意的情况包括()。
某公司月成本考核例会上,各部门经理正在讨论、认定直接人工效率差异的责任部门。根据你的判断,该责任部门应是()。
ShouldPetsBeForbiddeninDormitory?1.现在很多大学生在寝室养宠物2.有人赞成,有人则反对3.我的观点
最新回复
(
0
)