首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
admin
2015-08-17
62
问题
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
选项
答案
根据条件随机变量X的概率密度为[*]以Y=P(h)表示销售利润,它与季初应安排商品的数量h有关.由条件知[*]为求使期望利润最大的h,我们计算销售利润Y=P(h)的数学期望.为此,首先注意到:a<h<b,销售利润Y=P(h)的数学期望为[*]于是,季初安排h
0
千克商品,可以使期望销售利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/i2w4777K
0
考研数学一
相关试题推荐
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f’1(1,1)=a,f’2(1,1)=b,又u=f[x,f(x,x)],求du/dx|x=1.
由方程确定的隐函数z=z(x,y)在点(1,0,-1)处的微分为dz=________.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:交通车
证明:
一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,Xi表示第i次取到的白球数(i=1,2).求:P{X1=0,X2≠0},P{X1=X2},P{X1X2=0}.
将函数y=5-|2x-1|用分段形式表示,并作出函数图形。
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证:f在条件x12+x22+…+x=1下的最大值恰好为矩阵A的最大特征值。
求幂级数的收敛域.
设总体X的概率密度为p(x,λ)=,其中λ>0为未知参数,α>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量λ.
随机试题
是我们自己的所为和所不为决定着我们的未来。
下列关于祛痰药的叙述中,不正确的是
患儿,3岁。不思进食,泛恶,夜间哭闹少寐,腹胀,舌苔厚腻垢浊。其诊断是
A,D-洋地黄毒糖B,D-洋地黄糖C,D-加拿大糖D,L-鼠李糖E,葡萄糖属于6-去氧糖的是
产妇王某,34岁,宫内孕39+3周。于入院前一天晚出现宫缩,清晨起来又消失。入院当天中午,孕妇又开始出现宫缩,每4—5分钟一次,每次持续约30秒。为了早接触、早开奶,提倡将新生儿放在母亲胸前进行吸吮是在出生后
典型的响应级别通常可分为()。
持续经营假设是假设企业可以长生不老,即使进入破产清算,也不应该改变会计核算方法。()
某幼儿给一堆玩具分类,第一次按大小分类,第二次按颜色分类,第三次按材料分类。该幼儿的分类是按()
已知矩阵(I)求可逆矩阵P,使(AP)T(AP)为对角矩阵;(Ⅱ)若A+kE正定,求k的取值.
Wehadamarvelousholiday.Onlythelasttwodayswereslightly________byweather.
最新回复
(
0
)