首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k2[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k2[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
admin
2021-01-19
67
问题
设四元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
2
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的公共非零解;若没有,则说明理由.
选项
答案
在方程组(Ⅱ)的解集合中寻找满足方程组(I)的解向量,为此将方程组(Ⅱ)的通解代入方程组(I)求之.另一种思路是求方程组(I)与(Ⅱ)的公共解,即求它们解集的交集,为此令两通解相等,转化为四个任意常数是否有公共非零解. (1)将方程组(I)的系数矩阵化为含最高阶单位矩阵的矩阵,得到 [*] 故方程组(I)的一个基础解系含4一秩(A)=4—2=2个解向量,其基础解系可取为 α
1
=[0,0,1,0]
T
, α
2
=[一1,1,0,1]
T
. (2) 将方程组(Ⅱ)的通解代入方程组(Ⅰ),得到[*]解得 k
1
=一k
2
.当k
1
=一k
2
≠0时,则方程组(Ⅱ)的解为k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[0,一1,一1,0]
T
+k
2
[-l,2,2,1]
T
=k
2
[-1,l,1,1]
T
, 满足方程组(I),故方程组(I)和(Ⅱ)有非零公共解,所有的非零公共解即方程组(Ⅱ)的解集合中满足方程组(I)的解向量为 k[一1,l,1,1]
T
(k是非零的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/iV84777K
0
考研数学二
相关试题推荐
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(1)求的值;(2)计算极限
已知曲线L的方程367(1)讨论L的凹凸性;(2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设n阶方阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组Ⅰ:α1,α2,…,αn,Ⅱ:β1,β2,…,βn,Ⅲ:γ1,γ2,…,γn,如果向量组Ⅲ线性相关,则()
设F(u,v)具有连续的一阶偏导数,z=z(x,y)由方程所确定,并设(x-a)Fu’﹢(y-b)Fv’≠0.当(x,y,z)≠(a,b,c)时,求
设f〞(χ)∈C[a,b],证明:存在ξ∈(a,b),使得∫abf(χ)dχ-(b-a)f〞(ξ).
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
求极限=_______.
设5χ12+χ22+tχ32+4χ1χ2-2χ1χ3-2χ2χ3为正定二次型,则t的取值范围是_______.
(2008年试题,一)设f(x)=x2(x一1)(x一2),则f(x)的零点个数为().
随机试题
()是记录经济业务,明确经济责任,作为登账依据的书面证明。
Manypeoplewronglybelievethatwhentheyreacholdage,theirfamilieswillplacetheminnursinghomes.Theywillbeleftin
最适宜小儿、妇女及畏惧灸治者.有调和气血、温中散寒的作用的是
下列属于土工复合材料的有()。
在土方工程施工中,若采用观察法验槽,则其重点不应选择在()。
非歧视待遇
学生在学习了“三角形”的知识以后,再学习等腰三角形、直角三角形的知识。这种学习是上位学习。()
设变量已正确定义并赋值,以下正确的表达式是
已知英文字母m的ASCII码值为6DH,那么字母q的ASCII码值是
【B1】【B8】
最新回复
(
0
)