首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
admin
2017-12-31
78
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,其中a
1
≠0,A=αα
T
.
(1)求方程组AX=0的通解;
(2)求A的非零特征值及其对应的线性无关的特征向量.
选项
答案
(1)因为r(A)=1,所以AX=0的基础解系含有n-1个线性无关的特征向量,其基础解系为 [*], 则方程组AX=0的通解为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
为任意常数). (2)因为A
2
=kA,其中k=(α,α)=[*]>0.所以A的非零特征值为k, 因为Aα=αα
T
α=kα,所以非零特征值k对应的线性无关的特征向量为α.
解析
转载请注明原文地址:https://kaotiyun.com/show/iXX4777K
0
考研数学三
相关试题推荐
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24—0.2p1和q2=10一0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
设方阵A1与B1合同,A2与B2合同,证明:合同.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加到第2列得C,记,则【】
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
设A,B,C是三个随机事件,P(ABC)=0,且0<P(c)<1,则一定有()
随机试题
其他规范性文件
You’realone,drivingonadesertedstretchofhighway.Suddenlyyouareenclosedbycloudsofsmokeandsteamastheengine-tem
社会监督主体主要是()。
陈洪绶和崔子忠在画史上齐名,被称为“南陈北崔”。()
Johnson:Igothomeverylatelastnight.IhopeIdidn’tdisturbyouLandlady:______
R1、R2是一个自治系统中采用RIP路由协议的两个相邻路由器,R1的路由表如图a所示,当R1收到R2发送的如图b的(V,D)报文后,R1更新的路由表项中距离值从上到下依次为0、4、4、3,那么,①②③④可能的取值依次为()。
Howlongdidthechildrenplay?
Theboarddeemedit’surgentthatthesefiles______rightaway.
Fromthe_____itwasclearthathewasguilty,becausehedidappearonthescene.
Asurprisinglinkbetweenchangesintheseasonandcrimepatternsimpliesthat______.WhatunusualthingisfoundinMay?
最新回复
(
0
)