首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )
设函数f(x)在x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )
admin
2021-02-25
72
问题
设函数f(x)在x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )
选项
A、f(a)=0且f’(a)=0
B、f(a)=0且f’(a)≠0
C、f(a)>0且f’(a)>0
D、f(a)<0且f’(a)<0
答案
B
解析
本题考查分段函数的可导性.用左、右导数讨论.
如果f(a)>0,则在x=a的某个邻域内f(x)>0,此时|f(x)|=f(x),|f(x)|在x=a处可导,由题意,C不正确,类似可排除D
当f(a)=0时,设φ(x)=|f(x)|,则有
若φ(x)在x=a处可导,则需-|f’(a)|=|f’(a)|,故f’(a)=0,因此应选B.
转载请注明原文地址:https://kaotiyun.com/show/iY84777K
0
考研数学二
相关试题推荐
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
已知二次型f(χ1,χ2,χ3)=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3.当λ满足什么条件时f(χ1,χ2,χ3)正定?
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
被许可人以欺骗、贿赂等不正当手段取得的行政许可,且该行政许可属于直接关系公共安全、人生健康、生命财产安全事项的,申请人在()内不得再次申请该行政许可。
碾压机械的开行方式通常有()。
根据《著作权法》及其实施细则的有关规定,专利权的侵权行为主要表现为()。
在静强度没计中,塑性材料的许用应力等于()除以安全系数。
董事会对公司的合规管理承担最终责任,履行的合规职责不包括()。
发行人公司应当在其可转换公司债券上市前5个工作日内,将上市公告书全文刊登在至少一种由中国证监会指定的报刊及中国证监会指定的网站上。()
劳动者无须事先告知即可解除劳动合同的情形为()。
三个大学生赵衡、宋今、许云和三个中学生黄良、邓军、杨静寒假外出旅游,他们想要去的旅游地有云南、杭州、海南和九寨沟。已经知道:(1)每个人只能去一个地方。(2)凡是有大学生去的地方,就必须有中学生去。(3)凡是有中学生去的地方,
对冲基金每年给它投资方的回报从来都不会少于25%。因此,如果这个基金最多只能给我们20%的回报,它就一定不是一个对冲基金。以下哪项的推理方法与上文相同?
关于从中国起始的新亚欧大陆桥,正确叙述的是______。
最新回复
(
0
)