首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
admin
2016-07-22
96
问题
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
选项
答案
设(Ⅰ)的一个极大无关组为ξ
1
,ξ
2
,…,ξ
r
,(Ⅱ)的一个极大无关组为η
1
,η
2
,…η
r
因为(Ⅰ)可由(Ⅱ)表示,即ξ
1
,ξ
2
,…,ξ
r
可由η
1
,η
2
,…,η
r
线性表示,于是 r(ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
r
)=r(η
1
,η
2
,…,η
r
)=r 又ξ
1
,ξ
2
,…,ξ
r
线性无关,则ξ
1
,ξ
2
,…,ξ
r
,也可作为ξ
1
,ξ
2
,…,ξ
r
,η
1
,η
2
,…,η
r
的一个极大无关组,于是η
1
,η
2
,…,η
r
也可由ξ
1
,ξ
2
,…,ξ
r
表示,即(Ⅱ)也可由(Ⅰ)表示,得证
解析
转载请注明原文地址:https://kaotiyun.com/show/iew4777K
0
考研数学一
相关试题推荐
求函数f(x)=(2-t)e-tdt的最小值和最大值.
证明函数u=f(x,y,z)=在点(0,0,0)偏导数的存在性及在该点处沿方向l0=(cosα,cosβ,cosγ)的方向导数
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
设L为柱面x2+y2=1与平面z=x+y的交线,从z轴正向看为逆时针方向,则I=∮Lxzdx+xdy+dz=________.
设函数f(x,y)在点(0,0)的某个领域内连续,h(x)具有连续的导函数,且h(0)=0,h’(0)=1,区域DR={(x,y)|x2+y2≤R2},则=________.
设{un}为正项单调递增数列,证明收敛的充要条件是收敛.
设f(x)有一阶连续导数,且2∫0x(x+1-t)f’(t)dt-f(x)=x2-1,求f(x)表达式.
设曲面S为旋转抛物面z=x2+y2被平面z=1所截下的部分,求曲面S在平面xOy和平面yOz上的投影区域.
设A=[α1,α2,α3,α4],且η1=[1,1,1,1]T,η2=[0,1,0,1]T是齐次线性方程组Ax=0的基础解系,则().
设A为三阶矩阵,α1,α2为A的属于特征值1的线性无关的特征向量,α3为A的属于特征值-1的特征向量,则满足P-1AP=的可逆矩阵P为().
随机试题
只受对侧大脑运动皮质支配的脑神经运动核为
手术过程中,清点核对器械,敷料的时间是()
候肝胆的病变主要观察舌的
A.通关散合五磨饮子B.参附汤C.羚角钩藤汤合通瘀煎D.独参汤E.导痰汤血厥虚证,宜选
在项目招标的中标通知书发出后,招标人和中标人应按照( )订立书面合同。
在建的建筑工程因故中止施工的,建设单位应当自中止施工之日起( )内,向发证机关报告,并按照规定做好建筑工程的维护管理工作。
若企业因本票超过付款期未曾使用而要求银行退款,应借记“银行存款”,贷记“其他货币资金—银行本票”。()
填入下面一段文字横线处的语句,衔接最恰当的一组是:_______。因为,老房子在轰隆隆地与我们告别,缤纷的手工正在不知不觉成批死亡。①这些信息中,只有少量体现在手工制品中,更多的保存在制作的过程中②从文化人类学角度说,每一种手工的背后
兵家
Scottishcustomsandtraditionscoveraverywiderangeoftopics.Everythingfromkiltstogolf,bagpipestowhisky,Celticcro
最新回复
(
0
)