首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
(00年)设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
admin
2019-03-11
28
问题
(00年)设α
1
,α
2
,α
3
是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
选项
A、
B、
C、
D、
答案
C
解析
由于AX=b的通解等于AX=b的特解与AX=0的通解之和,故只要求出AX=0的基础解系,即得AX=b的通解.
因为r(A)=3,故4元齐次方程组Aχ=0的基础解系所含向量个数为4-r(A)=1,所以AX=0的任一非零解就是它的基础解系.由于α
1
及
(α
2
+α
3
)都是Aχ=b的解.故
是AX=0的一个解,从而ξ=(2,3,4,5)
T
也是AX=0的一个解,由上述分析知ξ是AX=0的一个基础解系,故AX=b的通解为X=α
1
+cξ因此C正确.
转载请注明原文地址:https://kaotiyun.com/show/ikP4777K
0
考研数学三
相关试题推荐
设f(x)连续,令φ(x)=讨论φ(x)在x=0处的可导性.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
设随机变量服从几何分布,其分布律为P{X=k)=(1-p)k-1p,0<p<1,k=1,2,…,求EX与DX.
设f(x)二阶连续可导,f"(0)=4,求下列极限。
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
考察级数,p为常数.(Ⅰ)证明:(n=2,3,4,…);(Ⅱ)证明:级数anp当p>2时收敛,当p≤2时发散.
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)一f(x0)与△x比较是()无穷小,△y—df(x)与△x比较是()无
设f(x)在x=0的邻域内有定义,f(0)=1,且=0,则f(x)在x=0处().
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
随机试题
设,求y"。
丹毒的致病菌是()
甲基汞在机体主要毒作用的靶器官是
下列哪些耕地应当划入基本的农田保护区,进行严格管理?()
一绳缠绕在半径为r的鼓轮上,绳端系一重物N,重物M以速度v和加速度a向下运动(如图)。则绳上两点A、D和轮缘上两点B、C的加速度是()。
道路行道树的最小布置宽度应为()m,道路分隔带兼作公共车辆停靠站台或供行人过路临时驻足之用时,最好宽()m以上,绿化带最在宽度一般为()m。
根据有关规定,工程蓄水验收由()进行。
以下符合烟叶税规定的是()。
货币政策就是财政政策。()
WhydoestheprofessormentionthetownofBodie,California?
最新回复
(
0
)