首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
(00年)设α1,α2,α3是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
admin
2019-03-11
58
问题
(00年)设α
1
,α
2
,α
3
是4元非齐次线性方程组Aχ=b的3个解向量,且A的秩r(A)=3,α
1
=(1,2,3,4)
T
,α
2
+α
3
(0,1,2,3)T,c表示任意常数,则线性方程组AX=b的通解X= 【 】
选项
A、
B、
C、
D、
答案
C
解析
由于AX=b的通解等于AX=b的特解与AX=0的通解之和,故只要求出AX=0的基础解系,即得AX=b的通解.
因为r(A)=3,故4元齐次方程组Aχ=0的基础解系所含向量个数为4-r(A)=1,所以AX=0的任一非零解就是它的基础解系.由于α
1
及
(α
2
+α
3
)都是Aχ=b的解.故
是AX=0的一个解,从而ξ=(2,3,4,5)
T
也是AX=0的一个解,由上述分析知ξ是AX=0的一个基础解系,故AX=b的通解为X=α
1
+cξ因此C正确.
转载请注明原文地址:https://kaotiyun.com/show/ikP4777K
0
考研数学三
相关试题推荐
在R4中求一个单位向量,使它与α1=(1,1,一1,1)T,α2=(1,一1,一1,1)T,α3=(2,1,1,3)T都正交.
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值,试求可逆矩阵P,使得P-1AP为对角形矩阵.
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线
设A,B都是n阶矩阵,使得A+B可逆,证明B(A+B)一1A=A(A+B)一1B.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)一1A是对称矩阵.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)一f(x0)与△x比较是()无穷小,△y—df(x)与△x比较是()无
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足P{|一μ|<μ}=0.95的常数μ=________.(φ(1.96)=0.975)
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(I)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
随机试题
脾气虚,脾阳虚,脾气下陷的共同症状是
对于本案,享有管辖权的人民法院是:()。如果在一审人民法院审理该案过程中,行政区划发生变动,B区人民法院所在行政区划变为E市中级人民法院辖区,那么当事人上诉时,应向哪个中级人民法院提出?()。
下列说法中,哪一项是错误的?
广义的操作风险定义认为,()以外的所有风险均可视为操作风险。
行为主义心理学的先驱人物不包括()。
以下关于简单程序设计的步骤和顺序的说法正确的是()。
公安队伍建设的终极目标是()。
数据库管理系统(DBMS)是一种()软件。
已知语句MOV AX,BX,其机器码为______。
(浙江大学2009年试题)Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience,a
最新回复
(
0
)