首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题 ①设f(x)在任意的闭区间[a,b]上连续.则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
下述命题 ①设f(x)在任意的闭区间[a,b]上连续.则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
admin
2019-08-09
60
问题
下述命题
①设f(x)在任意的闭区间[a,b]上连续.则f(x)在(一∞,+∞)上连续.
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数.
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为 ( )
选项
A、1.
B、2
C、3
D、4
答案
B
解析
①与③是正确的,②与④是不正确的,理由如下:
①是正确的.设x
0
∈(一∞,+∞),则它必含于某区间[a,b]中,由于题设f(x)在任意闭区间(a,b]上连续,故在x
0
处连续。所以在(一∞,+∞)上连续.论证的关键之处是:函数f(x)的连续性是按点来讨论的,在区间上每一点处连续,就说它在该区间上连续.
③是正确的.设x
0
∈(一∞,+∞),所以f(x
0
)>0,且在x
0
处连续.由连续函数的四则运算知
在x
0
处也连续,所以
上连续.
②是不正确的.反例:设f(x)=x,在区间[a,b]上
这个界与[a,b]有关,容易看出,在区间(一∞,+∞)上,f(x)=x就无界了.
④是不正确的.反例:f(x)=e
-y
2
,在区间(一∞,+∞)上0<f(x)≤1,所以f(x)在(一∞,+∞)上有界,而
在(一∞,+∞)上无界。这是因为当x→±∞时
故应选B.
转载请注明原文地址:https://kaotiyun.com/show/j0c4777K
0
考研数学一
相关试题推荐
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
证明
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
(Ⅰ)设X与Y相互独立,且X~N(5,15),Y~X2(5),求概率P{X-5>3.5};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D,求D绕直线x=1所成的旋转体的体积V。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形,记为D,求D的面积A;
曲线ρθ=1相应于的一段弧长s=____________。
设f’(x)为连续函数,下列命题正确的是()
计算曲面积分其中∑是旋转抛物面介于平面z=0及z=2之间的部分的下侧。
随机试题
设y=f(y)是由方程.xy+lny=0确定的函数,则=().
=____________.
尿糖阳性,除糖尿病外还可能包括
A.四逆散B.逍遥散C.大柴胡汤D.葛根芩连汤E.小柴胡汤
定量分析时,对分离度的要求是在重复性试验中,对峰面积测量值的RSD的要求是
国家统一规定,养老保险的结余要预留相当于()的养老金开支,其余按规定处理。
《旅馆业治安管理办法》规定,饭店对旅客寄存的财物要建立()
简述《中华人民共和国民办教育促进法》的基本原则。
据联合国人口基金预计:如果出生率降到每位妇女平均生两个孩子,到2050年世界人口将达94亿,2200年将达110亿。联合国人口基金报告预i贝0了世界人口分布将发生变化,因为生活在发达地区人口所占的百分比将从1995年的19%降到2150年的10%。1950
[2009年10月]关于x的方程a2x2一(3a2一8a)x+2a2一13a+15=0至少有一个整数根。(1)a=3;(2)a=5。
最新回复
(
0
)