首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
admin
2019-01-23
49
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
选项
答案
必要性 A是正交矩阵[*]. 若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
; 若|A|=-1,则AA
*
=|A|E=-E,A(-A
*
)=E,而已知AA
T
=E,从而有-A
*
=A
T
,即a
ij
=A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=-1,且a
ij
=-A
ij
时,-A
*
=A
T
,AA
*
=|A|E=-E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/krM4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:ξ∈(a,6)使得
求[φ(x)-1]f(t)dt,其中f(t)为已知的连续函数,φ(x)为已知的可微函数.
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E一B(E+AB)-1A].
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(*)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数(**)
设f(x)在(a,b)内可导,证明:,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x一x0)>f(x).(*)
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,求属于λ2=λ3=2的另一个特征向量.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.求方程组AX=0的通解.
设的三个解,求其通解.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,试证:(1)存在点η∈使得f(η)=η.(2)对必存在点ξ∈(0,1),使得f’(ξ)一λ[f(ξ)-ξ]=1.
随机试题
下列盈利性指标中属于银行价值管理的核心指标,且与经济资本紧密相关的是()。
试述双重征税协定的主要内容及与缔约国国内税法的关系。
A、PEG6000B、米糊C、炼蜜D、米醋E、蜂蜡下列剂型制备中常用何种赋形剂,水丸用
易导致压疮发生的护理措施是
出生后,人造血干细胞的主要来源是
下列行为违反了律师职业道德的是:()
局域网是指将各种计算机网络设备互联在一起的通信网络,但其覆盖的地理范围有限,通常在()。[2011年真题]
不变增长模型中内部收益率的计算公式是( )。
以下关于劳务关系特征的表述,正确的有()。
利率水平的决定因素包括()。
最新回复
(
0
)