首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,b都是n阶矩阵,证明E-AB可逆E-BA可逆.
设A,b都是n阶矩阵,证明E-AB可逆E-BA可逆.
admin
2018-06-27
63
问题
设A,b都是n阶矩阵,证明E-AB可逆
E-BA可逆.
选项
答案
用线性方程组的克拉默法则. 证明“[*]”方向.设E-AB可逆,要证明E-BA可逆,为此只要证明齐次线性方程组(E-BA)X=0只有零解. 设η是(E-BA)X=0的解,即η-BAη=0,则Aη-ABAη=0,即(E-AB)Aη=0,由于E-AB可逆,得Aη=0,再从η-BAη=0得η=0.证明完毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/j4k4777K
0
考研数学二
相关试题推荐
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
A、B、C、D、A利用恒等式sin4x+cos4x=(cos’x—sin’x)’+2sin’xcos’x=cos2x可得故应选A.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f’’(ξ)=一4.
设0<x<1。证明
过第一象限中椭圆上的点(ξ,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ξ,η)的坐标及该三角形的面积.
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.(1)求曲线y=f(x)的方程;(2)已知曲线y=sinx在[0,π]上的弧长为l,试用,表示曲线y=f(x)的弧长s.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
(2002年试题,七)某闸门的形状与大小如图1—3—8所示,其中直线l为对称轴x闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
随机试题
某房屋登记的所有人为甲,乙认为自己是共有人,于是向登记机构申请更正登记。甲不同意,乙又于5月15日进行了异议登记。5月20日,丙打算买甲的房屋。但是丙到登记机构查询发现甲的房屋存在异议登记,遂放弃购买。由于乙异议登记不当,给甲造成损失。对此,下列表述正确的
简述建设工程合同中分包与转包的区别。
舌下腺和颌下腺导管位于哪个分区
由消防控制室接地板引至各消防电子设备的专用接地线应选用铜芯绝缘导线,其线芯截面面积应不小于()。
基金份额净值是()。
企业某设备1~4周期的实际销售量分别为:6000台、6200台、6600台、6800台,采用上期销售量法计算,则第5周期销售量的预测值为()台。
在出租校舍的“灰色地带”事实之下,大学暑期出租校舍赚钱,打的就是法律无规定的“擦边球”,滋生出来的一系列负面问题不容小觑。公司企业租借教室、宿舍,直接影响暑假未离校的学生的正常生活和休息,这在全国各大高校学生中已有普遍反映;外人出入频繁,增加保安工作量,产
以《雷雨》《日出》《原野》《北京人》为例,谈谈曹禺对五四以来戏剧创作的超越。
设,则在实数域上与A合同的矩阵为
Whatdoconsumersreallywant?That’saquestionmarketresearcherswouldlovetoanswer.Butsincepeopledon’talwayssaywhat
最新回复
(
0
)