首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,且∫0xf(t)dt+∫0xtf(x—t)dt=x,求f(x).
设f(x)二阶可导,且∫0xf(t)dt+∫0xtf(x—t)dt=x,求f(x).
admin
2021-11-09
72
问题
设f(x)二阶可导,且∫
0
x
f(t)dt+∫
0
x
tf(x—t)dt=x,求f(x).
选项
答案
∫
0
x
tf(x一t)dt[*]x∫
0
x
f(u)du一∫
0
x
uf(u)du=x∫
0
x
f(t)dt-∫
0
x
tf(t)dt ∫
0
x
f(t)dt+∫
0
x
tf(x一t)dt=x化为 ∫
0
x
f(t)dt+x∫
0
x
f(t)dt-∫
0
x
tf(t)dt=x,两边求导得 f(x)+∫
0
x
f(t)dt=1,两边再求导得 f’(x)+f(x)=0,解得f(x)=Ce
-x
, 因为f(0)=1,所以C=1,故f(x)=e
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/jMy4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
微分方程(2+3)y〞-4y′的通解为_______.
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为().
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
微分方程xyˊ=y(lnxy-1)的通解是.
已知函数y=e2x+(x+1)ex是二阶常系数非齐次线性微分方程y"+ayˊ+by=Cex的一个特解,则该方程的通解是().
已知当x→0时,f(x)=arcsinx-arctanax与g(x)=bx[x-In(1+x)]是等价无穷小,则()
随机试题
下列程序的输出结果是()。#include<stdio.h>main(){structst{inty,x,z;};union{longi;intj;chark;}un;printf("%d,%d\n",sizeof(str
政治风险的种类有哪些?
我觉得听听力时有必要做笔记。
下列哪些请求不适用诉讼时效?()
风险监控的主要内容是()。
经国务院确认,税务行政许可包括()。
某人申购了10000份基金,申购时单位基金净值是1.08元,申购费率为1%。经过6个月后赎回。此时单位基金净值1.15元,赎回费率0.8%。若不考虑资金的时间价值,则该投资者的投资收益为()元。
Getagoodeducationismoreimportanttodaythan【M1】________everbefore.InCanadamostlychildrenattendpubl
甲和乙采用公钥密码体制对数据文件进行加密传送,甲用乙的公钥加密数据文件,乙使用(63)来对数据文件进行解密。
Theagriculturerevolutioninthenineteenthcenturyinvolvedtwothings;theinventionoflabor-savingmachineryandthedevelo
最新回复
(
0
)