首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
admin
2018-05-21
9
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
f(x)/x
3
存在.
证明:存在ξ
1
,ξ
2
∈[-a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx,a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
选项
答案
上式两边积分得∫
-a
a
f(x)dx=1/24∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[-a,a]上积分得2m/5a
5
≤∫
-a
a
f
(4)
(ξ)x
4
dx≤2M/5a
5
, 从而ma
5
/60≤1/24∫
-a
a
f
(4)
(ξ)x
4
dx≤Ma
5
/60,或ma
5
/60≤∫
-a
a
f(x)dx≤Ma
5
/60, 于是m≤60/a
5
∫
-a
a
f(x)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=60/a
5
∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/jOr4777K
0
考研数学一
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(1)存在ξ∈(0,1),使得f(ξ)=1一ξ;(2)存在两个不同的点η,ζ∈(0,1),使得f’(n)f’(ξ)=1.
微分方程y’=的通解是_________.
设y=y(x)是二阶线性常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
设三维向量已知向量组α1,α2,α3与β1,β2,β3是等价的.(Ⅰ)求a,b,c.(Ⅱ)求向量组α1,α2,α3的一个极大无关组,并将β1用α1,α2,α3线性表示.
下列矩阵中与其他矩阵不合同的是()
计算二重积分I=|xy|min{x,y}曲,其中D={(x,y)||x|≤1,|y|≤1}.
求极限.记此极限函数为f(x),求函数f(x)的间断点并指出其类型.
设函数f(x)=,讨论函数f(x)的间断点,其结论为
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
随机试题
维生素D缺乏症的X线表现有
高剂量率腔内后装治疗与低剂量率腔内后装治疗在放射剂量的计算上需要适当转换,两者校正系数为
A、出生后即刻B、3~6个月C、6~12个月D、1~2岁E、9~11岁腭裂修复术最佳时机为
下列哪项是产后用药三禁
期货从业人员应当如实向投资者申明其所具有的(),不得向投资者提供虚假文件、材料。
某5年期债券,面值为100元,票面利率为10%,单利计息,市场利率为10%,到期一次还本付息,则该债券的麦考利久期为()年。
活期存款通常()元起存。
流动比率等于流动资产除以流动负债,其公认的标准应是()。
新闻评论的功能和任务。(暨南大学,2008年)
Whywastheyoungwomanheldupinthefederalimprisonmentcenter?
最新回复
(
0
)