首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
admin
2018-05-21
12
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
f(x)/x
3
存在.
证明:存在ξ
1
,ξ
2
∈[-a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx,a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
选项
答案
上式两边积分得∫
-a
a
f(x)dx=1/24∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[-a,a]上积分得2m/5a
5
≤∫
-a
a
f
(4)
(ξ)x
4
dx≤2M/5a
5
, 从而ma
5
/60≤1/24∫
-a
a
f
(4)
(ξ)x
4
dx≤Ma
5
/60,或ma
5
/60≤∫
-a
a
f(x)dx≤Ma
5
/60, 于是m≤60/a
5
∫
-a
a
f(x)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=60/a
5
∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/jOr4777K
0
考研数学一
相关试题推荐
微分方程y"一2y’+2y=ex的通解为_________.
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
设x1=a>0,y1=b<0,(a≤b),且xn+1=,n=1,2,…,证明:
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是()
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵.C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设z=,其中f(u,v)是连续函数,则dz=________.
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)