首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
设f(x)在[-a,a](a>0)上有四阶连续的导数,f(x)/x3存在. 证明:存在ξ1,ξ2∈[-a,a],使得a5f(4)(ξ1)=60∫-aaf(x)dx,a4f(4)(ξ1)=120f(ξ2).
admin
2018-05-21
13
问题
设f(x)在[-a,a](a>0)上有四阶连续的导数,
f(x)/x
3
存在.
证明:存在ξ
1
,ξ
2
∈[-a,a],使得a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx,a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
选项
答案
上式两边积分得∫
-a
a
f(x)dx=1/24∫
-a
a
f
(4)
(ξ)x
4
dx. 因为f
(4)
(x)在[-a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[-a,a]上积分得2m/5a
5
≤∫
-a
a
f
(4)
(ξ)x
4
dx≤2M/5a
5
, 从而ma
5
/60≤1/24∫
-a
a
f
(4)
(ξ)x
4
dx≤Ma
5
/60,或ma
5
/60≤∫
-a
a
f(x)dx≤Ma
5
/60, 于是m≤60/a
5
∫
-a
a
f(x)dx≤M, 根据介值定理,存在ξ
1
∈[-a,a],使得f
(4)
(ξ
1
)=60/a
5
∫
-a
a
f(x)dx,或a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx. 再由积分中值定理,存在ξ
2
∈[-a,a],使得 a
5
f
(4)
(ξ
1
)=60∫
-a
a
f(x)dx=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/jOr4777K
0
考研数学一
相关试题推荐
微分方程xy"+3y’=0的通解为_________.
设f(x)在[a,b]上有二阶连续导数,证明∫abf(x)dx=∫abf"(x)(x一a)(x一b)dx.
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积.
过椭圆3x2+2xy+3y2=1上任一点作椭圆的切线,试求该切线与两坐标轴所围成的三角形面积的最小值.
设a1=2,an+1=,(n=1,2,…).证明
计算曲线积分其中曲线L是沿单位圆x2+y2=1的上半圆周从点A(0,1)到B(-1,0)的一段弧.
设为BX=0的解向量,且AX=α3有解求BX=0的通解
已知(1,一1,1,一1)T是线性方程组的一个解,试求:(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部解.
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组AX=0的基础解系,k1,k2为任意常数,则方程组AX=b的通解(一般解)是
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
随机试题
对我国社会主义初级阶段的社会主要矛盾作出规范表述的是()
简述头脑风暴法实施的基本要点。
输血需加温的是
患者,女,59岁。舌左侧缘中部溃烂5个月,约2.3cm×1.5cm×0.5cm大小,活检报告为“鳞癌”,下6残根,边缘锐利。舌癌的好发部位是
甲公司为制造业企业,2×16年产生下列现金流量:(1)收到客户定购商品预付款3000万元;(2)税务部门返还上年度增值税款600万元;(3)支付购入作为以公允价值计量且其变动计入当期损益的金融资产核算的股票投资款1200万元:(4)为补充营运资金不足,自股
毛泽东提出在科学文化领域里实行的方针是()。
去年国庆某商场2天时间的销售额为2000万元。今年该商场预计,国庆期间销售额达到7000万元是不成问题的。以下哪一项最能支持上述推理?
已知二叉树T的结点形式为(llink,data,count,rlink),在树中查找值为X的结点,若找到,则记数(count)加l;否则,作为一个新结点插入树中,插入后仍为二叉排序树,写出其非递归算法。
ThePetofModernPeopleWriteanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethe
Shehasa_____knowledgeofFrench,butshecan’tresistshowingoffinpublic.
最新回复
(
0
)