首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可由向量组(I)α1,α2,…,αs线性表出,则必有 ( )
向量组(I)α1,α2,…,αs,其秩为r1,向量组(Ⅱ)β1,β2,…,βs,其秩为r2,且βi(i=1,2,…,s)均可由向量组(I)α1,α2,…,αs线性表出,则必有 ( )
admin
2018-09-20
49
问题
向量组(I)α
1
,α
2
,…,α
s
,其秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
s
,其秩为r
2
,且β
i
(i=1,2,…,s)均可由向量组(I)α
1
,α
2
,…,α
s
线性表出,则必有 ( )
选项
A、α
1
+β
1
,α
2
+β
2
,…,α
s
+β
s
的秩为r
1
+r
2
B、α
1
一β
1
,α
2
一β
2
,…,α
s
一β
s
的秩为r
1
一r
2
C、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
+r
2
D、α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的秩为r
1
答案
D
解析
设α
1
,α
2
,…,α
s
的极大线性无关组为α
1
,α
2
,…,
则α
i
(i=1,2,…,s)均可由α
1
,α
2
,…,
线性表出,又β
i
(i=1,2,…,s)可由(I)线性表出,即可由α
1
,α
2
,…,
线性表出,即α
1
,α
2
,…,
也是向量组α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
的极大线性无关组,故r(α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
s
)=r
1
,其余选项可用反例否定.
转载请注明原文地址:https://kaotiyun.com/show/jRW4777K
0
考研数学三
相关试题推荐
曲线y=的渐近线方程为_______.
设A,B均是n阶矩阵,证明AB与BA有相同的特征值.
设A是n阶正交矩阵,λ是A的实特征值,α是相应的特征向量.证明λ只能是±1,并且α也是AT的特征向量.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
已知α=(1,-2,2)T是二次型xTAx=ax12+4x22+bx32-4x1x2+4x1x3-8x2x3矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
设3阶矩阵A的特征值λ=1,λ=2,λ=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T.(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表出:(Ⅱ)求Anβ.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
设(X,Y)~F(x,y)=判断X,Y是否不相关,说明理由;
随机试题
我国《票据法》规定的票据丧失的救济方法有()
判断间的蕴涵关系,应是()
下列哪一种民事诉讼请求属于给付之诉?
某工程,建设单位与施工单位按照《建设工程施工合同(示范文本)》签订了施工合同,经总监理工程师批准的施工总进度计划如图5—1所示(时间单位:月),各项工作均按最早开始时间安排且匀速施工。施工过程中发生如下事件:事件1:工作C开始后,施工单位向项目
按物质产生爆炸的原因和性质不同,通常将爆炸分为()等几种。
看涨期权的买方具有在约定期限内按()价格买入一定数量金融资产的权利。
某自行车厂(增值税一般纳税人)生产销售自行车,出厂不含税售价为280元/辆。2019年5月末留抵税额3000元,6月该厂购销情况如下:(1)向当地百货大楼销售800辆,百货大楼当月付清货款后,厂家给予了8%的现金折扣。(2)向外地特约经销点销售500辆
《义务教育英语课程标准(2011年版)》指出,英语课程的目的是发展学生的综合语言运用能力,而综合语言运用能力的形成建立在语言技能、语言知识、情感态度、学习策略和文化意识等方面整体发展的基础上。这体现了()的语言教学观。
已知如下资料:某大型石化公司A准备运用手中的多余现金进入生物医药行业,目前A公司的债务价值为5亿元,负债权益比为1/10;A公司为上市公司,其股票β值为0.8;A公司的债务为无风险债务,收益率为8%;A公司股票今年的期望收益率为16%,正好与资
Maryfound______extremelydifficulttopasstheexamination.
最新回复
(
0
)