首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 X=(xij)3×3,问a、b、c各取何值时,矩阵方程AX=B有解?并在有解时,求出全部解.
设 X=(xij)3×3,问a、b、c各取何值时,矩阵方程AX=B有解?并在有解时,求出全部解.
admin
2018-07-27
49
问题
设
X=(x
ij
)
3×3
,问a、b、c各取何值时,矩阵方程AX=B有解?并在有解时,求出全部解.
选项
答案
由下列矩阵的初等行变换: [*] 可见,r(A)=r[A[*]B][*]a=1,b=2,c=1,于是由上题知Ax=B有解[*]a=1,b=2,c=1.此时,对矩阵D作初等行变换: [*] 于是若将矩阵B按列分块为B=[b
1
b
2
b
3
],则得方程组Ax=b
1
的通解为:x
1
=(1+k,k,-k)
T
;方程组Ax=b
2
的通解为:x
2
=(2+l,2+l,-l)
T
;方程组Ax=b
3
的通解为:x
3
=(1+m,-1+m,-m)
T
,所以,当a=1,b=2,c=1时有解,全部解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jXW4777K
0
考研数学三
相关试题推荐
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
设常数a>2,则级数
已知A=,B是3阶非0矩阵,且BAT=0,则a=________.
已知A=,若|λE-A|=0,求λ的值.
已知X,Y是相互正交的n维列向量,证明E+XYT可逆.
已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=______.
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(Ⅱ)V=|X-Y|的概率密度fV(v).
已知二次型xTAx是正定二次型,x=Cy是坐标变换,证明二次型yTBy是正定二次型,其中B=CTAC.
计算行列式
(已知A,B为三阶非零方阵,A=,B1=,B2=,B3=为齐次线性方次线性方程组Bx=0的三个解向量,且Ax=B3有解。求a,b的值;
随机试题
土地抵押权变更登记,下列()情形的申请人包括抵押人、抵押权人和受让人。
如图4-60所示均质圆盘放在光滑水平面上受力F作用,则质心C的运动为()。
砂砾石地基的特点包括()。
下列选项中,属于当事人提起诉讼必须符合的条件的有()。
人工智能听起来很遥远,其实已经______到我们的日常工作和生活中了。人工智能的应用,让生活更便捷、更有乐趣,节约时间、解放体力,甚至未来机器将______人类进行一些基础性的劳作,这个场景令人憧憬。
快递包装标准滞后、回收循环难度大、环保意识不足,是阻碍快递包装绿色化的三大瓶颈。要打破这些瓶颈,还有大量的工作要做。比如,必须解决现行标准多为推荐性指标、约束力不强、执行有难度等问题,出台国家级的强制性标准;要解决对快递件的“五花大绑”、过度包装问题,首先
阅读下述材料,谈谈你对班主任做法的认识。一位家长在星期一发现儿子上学时磨磨蹭蹭,遂追问是怎么回事,孩子犹豫了半天才道出实情。原来在上个星期二早上,班主任老师召开全班同学会议,用无记名的方式评选3名“坏学生”,因有两名同学在最近违反了学校纪律,无可
A、 B、 C、 D、 B
ALACRITY:
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
最新回复
(
0
)