首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A与B相似,其中 求正交矩阵Q,使得Q-1AQ=B.
已知矩阵A与B相似,其中 求正交矩阵Q,使得Q-1AQ=B.
admin
2021-02-25
25
问题
已知矩阵A与B相似,其中
求正交矩阵Q,使得Q
-1
AQ=B.
选项
答案
由于B是对角矩阵,其特征值为λ
1
=2,λ
2
=1,λ
3
=-1,而A与B相似,故它们也是A的特征值. 对于特征值λ
1
=2,由 [*] 得A的属于λ
1
=2的特征向量可取为ξ
1
=(1,0,0)
T
. 对于特征值λ
2
=1,由 [*] 得A的属于λ
2
=1的特征向量可取为ξ
2
=(0,1,1)
T
. 对于特征值λ
3
=-1,由 [*] 得A的属于λ
3
=-1的特征向量可取为ξ
3
=(0,1,-1)
T
.显然,ξ
1
,ξ
2
,ξ
3
已正交,再单位化,得 [*] 令 [*] 则Q可逆,且有Q
-1
AQ=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/jZ84777K
0
考研数学二
相关试题推荐
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A=,则下列矩阵中与A合同但不相似的是
下列矩阵中,正定矩阵是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
随机试题
结核性脑膜炎的脑脊液特点为
A.对甲类传染病疫区实施封锁管理B.承担责任范围内的传染病监测管理工作C.在必要时可以采取停工、停业、停课D.承担本单位及负责地段的传染病预防、控制和疫情管理工作E.对违反《中华人民共和国传染病防治法》的行为给予行政处罚各级各类医疗保健机构设立
某单位组织员工体检,某员工的检验结果显示乙肝五项中仅抗—HBs阳性。其余均为阴性,肝功能正常,该员工咨询阳性结果的意义,护士应告知其抗—HBs阳性是表明()
手工铺砂法测试路面构造深度的注意事项有()。
某黄酒厂(增值税一般纳税人)将2吨自产黄酒发放给职工作福利,其成本4000元/吨,成本利润率10%,每吨消费税税额240元,计算该酒厂此项业务应缴纳的消费税和增值税销项税额。
苏州四大历史名园是()
社会主义时期我国民族关系呈现出的发展趋向是( )。
[*]
为了避免第三方偷看www浏览器与服务器交互的敏感信息,通常需要()。
Nearlyeverybodyenjoyschicken,andthemostfamousnameinchickenisKentuckyFriedChickenMr.Sanders,themanwhostarted
最新回复
(
0
)