首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数. (1)求f(x)的最小值; (2)设数列{xn}满足,证明存在,并求此极限.
设函数. (1)求f(x)的最小值; (2)设数列{xn}满足,证明存在,并求此极限.
admin
2014-01-26
108
问题
设函数
.
(1)求f(x)的最小值;
(2)设数列{x
n
}满足
,证明
存在,并求此极限.
选项
答案
(1)因[*],令f’(x)=0,得f(x)的唯一驻点x=1,且在定义域内没有导数不存在的点.当0<x<1时,f(x)<0,当x>1时,f’(x)>0,因此x=1为f(x)的极小值点,也是最小值点,且最小值为f(1)=1. (2)由(1)知,数列{x
n
}有[*],即[*],于是x
n
<x
n+1
,即{x
n
}单调上升. 显然,x
n
>0,于是由[*],即x
n
<e,所以{x
n
}单调上升且有上界,故[*]存在. 设[*],当n→∞时,对[*]两边求极限,并由极限的保号性有[*] 又由(1)得[*],两边求极限有[*],解 得a=1,即[*].
解析
第(1)问利用导数讨论即可;第(2)问利用极限存在的单调有界收敛准则.
转载请注明原文地址:https://kaotiyun.com/show/jm34777K
0
考研数学二
相关试题推荐
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线
[2012年]求极限
设α为n维单位向量,E为n阶单位矩阵,则()
设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(
(02年)设函数u=f(χ,y,z)有连续偏导数,且z=z(χ,y)由方程χeχ-yey=zez所确定,求du.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值。
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(14年)证明n阶矩阵相似.
随机试题
合谷穴主治包括()。
《摸鱼儿》下片所借用的典故有
使原系统的变化率减小,使系统接近平衡态的反馈是______反馈。
女,19岁。因发热倦头痛、烦躁2天,于1月28日入院。查体:血压130/80mmHg,精神差,神志清楚,全身散在瘀点、瘀斑,颈抵抗阳性,Kernig征及Babinski征均阳性。实验室检查:腰穿脑脊液压力240mmH2O,外观混浊,WBCl200×106/
试述合同保全中的代位权。[中山大学2017年研]
公路建设必须招标的项目有()。
依据《中华人民共和国循环经济促进法》中的“循环经济”是指在()等过程中进行的减量化、再利用资源化活动的总称。
A储运公司仓储区占地面积为90000m2,共有8个库房,原用于存放一般货物。3年前,该储运公司未经任何技术改造和审批,擅自将1号、4号和6号库房改存危险化学品。2016年3月14日12时18分,仓储区4号库房内首先发生爆炸,12min后,6号库房也发生
下列关于刑事拘留的表述,正确的是()。
求
最新回复
(
0
)