首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数. (1)求f(x)的最小值; (2)设数列{xn}满足,证明存在,并求此极限.
设函数. (1)求f(x)的最小值; (2)设数列{xn}满足,证明存在,并求此极限.
admin
2014-01-26
81
问题
设函数
.
(1)求f(x)的最小值;
(2)设数列{x
n
}满足
,证明
存在,并求此极限.
选项
答案
(1)因[*],令f’(x)=0,得f(x)的唯一驻点x=1,且在定义域内没有导数不存在的点.当0<x<1时,f(x)<0,当x>1时,f’(x)>0,因此x=1为f(x)的极小值点,也是最小值点,且最小值为f(1)=1. (2)由(1)知,数列{x
n
}有[*],即[*],于是x
n
<x
n+1
,即{x
n
}单调上升. 显然,x
n
>0,于是由[*],即x
n
<e,所以{x
n
}单调上升且有上界,故[*]存在. 设[*],当n→∞时,对[*]两边求极限,并由极限的保号性有[*] 又由(1)得[*],两边求极限有[*],解 得a=1,即[*].
解析
第(1)问利用导数讨论即可;第(2)问利用极限存在的单调有界收敛准则.
转载请注明原文地址:https://kaotiyun.com/show/jm34777K
0
考研数学二
相关试题推荐
(07年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
[2009年]设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
[2016年]设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).确定a,使得E(aT)=θ.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
(01年)已知抛物线y=pχ2+qχ(其中P<0,q>0)在第一象限内与直线χ+y=5相切,且抛物线与χ轴所围成的平面图形的面积为S.(1)问P和q为何值时,S达到最大值?(2)求出此最大值.
(87年)将函数f(χ)=展成χ的幂级数,并指出其收敛区间.
[2017年]已知方程在区间(0,1)内有实根,求常数k的取值范围.
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)