首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设 对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
[2009年] 设 对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2021-01-25
62
问题
[2009年] 设
对上题中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
证一 因ξ
1
,ξ
2
,ξ
3
为三维向量,可用行列式判别它们的线性相关性. [*] 故ξ
1
,ξ
2
,ξ
3
线性无关. 证二 注意到Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
,自然会问Aξ
1
等于什么,易求得Aξ
1
=0.设 l
1
ξ
1
+l
2
ξ
2
+l
3
ξ
3
=0. ① 下面反复利用线性无关的向量ξ
1
≠0,证明l
1
=l
2
=l
3
=0.在式①两端左乘A,得到 l
1
Aξ
1
+l
2
Aξ
2
+l
3
Aξ
3
=l
1
·0+l
2
ξ
1
+l
3
Aξ
3
=l
2
ξ
1
+l
3
Aξ
3
=0. 再在上面最后一个等式两端左乘A,得到 l
2
Aξ
1
+l
3
A
2
ξ
3
=l
3
ξ
1
=0. 因ξ
1
≠0,故l
3
=0,代入式①得l
1
ξ
1
+l
2
ξ
2
=0,则 l
1
Aξ
1
+l
2
Aξ
2
=l
2
Aξ
2
=l
2
ξ
1
=0. 因ξ
1
≠0,故l
2
=0.再将l
2
=l
3
=0代入①得l
1
ξ
1
=0,因ξ
1
≠0,故l
1
=0.因此ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Hwx4777K
0
考研数学三
相关试题推荐
证明:D=
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P{max(X,Y)≠0)及P{min(X,Y)≠0}.
设齐次线性方程组为正定矩阵,求a,并求当|X|=时XTAX的最大值.
求函数y=的导数.
[2006年]设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求:F(-1/2,4).
(1997年)设函数f(x)在[0,+∞)上连续.单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0)
[2011年]设随机变量X与Y的概率分布分别为且P(X2=Y2)=1.求二维随机变量(X,y)的概率分布;
(97年)设随机变量X的绝对值不大于1,P(X=-1)=,P(X=1)=.在事件{-1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比.试求X的分布函数F(χ)=P(X≤χ).
设三阶矩阵A的特征值为λ1=一1,λ2=,λ3=,其对应的特征向量为α1,α2,α3,令P=(2α3,一3α1,一α2),则P一11(A一1+2E)P=________.
设A为3阶矩阵,丨A丨=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则丨BA*丨=__________.
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)