首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,Xn是来自总体X的一个简单随机样本,为样本均值。 (1)求参数θ的矩估计量,计算E并判断是否依概率收敛于θ,说明理由; (2)求参数θ的最大似然估计量,并计算E。
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,Xn是来自总体X的一个简单随机样本,为样本均值。 (1)求参数θ的矩估计量,计算E并判断是否依概率收敛于θ,说明理由; (2)求参数θ的最大似然估计量,并计算E。
admin
2021-04-16
110
问题
设总体X~U[θ,2θ],其中θ>0是未知参数,X
1
,X
2
,X
n
是来自总体X的一个简单随机样本,
为样本均值。
(1)求参数θ的矩估计量
,计算E
并判断
是否依概率收敛于θ,说明理由;
(2)求参数θ的最大似然估计量
,并计算E
。
选项
答案
(1)由于总体X~U[θ,2θ],由矩估计方程 XEX=(θ+2θ)/2=3θ/2, 得参数θ的矩估计量为 [*] 即对于任意ε>0,有 [*] 即[*]依概率收敛于θ。 (2)设x
1
,x
2
,…,x
n
为样本观测值,似然函数为 L(θ)=[*](1/θ)=1/θ
i
,似然函数非零要求θ≤x
i
≤2θ(i=1,2,…,n),令x
(1)
=min{x
1
,x
2
,…,x
n
},x
(n)
=max{x
1
,x
2
,…,x
n
},则θ≤x
(1)
≤x
(n)
≤2θ,即x
(n)
/2≤θ≤x
(1)
,又由于L(θ)关于θ是单调递减的,则当θ=(1/2)x
(n)
时,L(θ)达到最大,所以参数θ的最大似然估计量为 [*]=(1/2)X
(n)
,其中X
(n)
=max{X
1
,X
2
,…,X
n
},由于X
(n)
的概率密度为 [*]=(n/θ
n
)(x-θ)
n-1
,θ≤x≤2θ,故 EX
(n)
=∫
θ
2θ
x(n/θ
n
)(x-θ)
n-1
dx=(2n+1)θ/(n+1),从而可得[*]=E(X
(n)
/2)=(2n+1)θ/2(n+1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/jpx4777K
0
考研数学三
相关试题推荐
设3阶方阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A一2B|=_____.
f(x)=在区间(一∞,+∞)内零点个数为()
设函数f(x)可导,且f(0)=0,f’(x)=1,f(x)=∫0xtn一1f(xn一tn)dt,则
设总体X~N(μ,22),X1,X2,…,Xn为取自总体的一个样本,为样本均值,要使E(-μ)2≤0.1成立,则样本容量n至少应取_______.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
当x∈[0,1]时,f"(x)>0,则f′(0),f′(1),f(1)=f(0)的大小次序为().
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT.
设ex-是关于x的3阶无穷小,求a,b.
设在部分球面x2+y2+z2=5R2,x>0,y>0,z>0上函数f(x,y,z)=lnx+lny+3lnz有极大值,试求此最大值,并利用上述结果证明对任意正数a,b,c总满足abc3≤275
随机试题
液化氯化石蜡的含氯量在()左右,可作橡胶、纤维蜡、乙烯类树脂的增韧剂。
常用的尖口角钳有()种规格。
在Excel2010中,公式“3.14*$C$4”中对C4单元格进行了()
纤维增生型慢性牙龈炎的病理改变不包括
医疗机构应当对其医务人员进行的教育不包括
下列选项中,不属于我国预算收入中的专项收人的是()。
根据《合同法》规定,当事人订立合同,采取()方式。
班主任在组织班级教育力量中所起的作用是()。
教育史上提出“有教无类”口号的教育家是()。
在一行上写多条语句时,应使用的分隔符是()。
最新回复
(
0
)