首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,Xn是来自总体X的一个简单随机样本,为样本均值。 (1)求参数θ的矩估计量,计算E并判断是否依概率收敛于θ,说明理由; (2)求参数θ的最大似然估计量,并计算E。
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,Xn是来自总体X的一个简单随机样本,为样本均值。 (1)求参数θ的矩估计量,计算E并判断是否依概率收敛于θ,说明理由; (2)求参数θ的最大似然估计量,并计算E。
admin
2021-04-16
54
问题
设总体X~U[θ,2θ],其中θ>0是未知参数,X
1
,X
2
,X
n
是来自总体X的一个简单随机样本,
为样本均值。
(1)求参数θ的矩估计量
,计算E
并判断
是否依概率收敛于θ,说明理由;
(2)求参数θ的最大似然估计量
,并计算E
。
选项
答案
(1)由于总体X~U[θ,2θ],由矩估计方程 XEX=(θ+2θ)/2=3θ/2, 得参数θ的矩估计量为 [*] 即对于任意ε>0,有 [*] 即[*]依概率收敛于θ。 (2)设x
1
,x
2
,…,x
n
为样本观测值,似然函数为 L(θ)=[*](1/θ)=1/θ
i
,似然函数非零要求θ≤x
i
≤2θ(i=1,2,…,n),令x
(1)
=min{x
1
,x
2
,…,x
n
},x
(n)
=max{x
1
,x
2
,…,x
n
},则θ≤x
(1)
≤x
(n)
≤2θ,即x
(n)
/2≤θ≤x
(1)
,又由于L(θ)关于θ是单调递减的,则当θ=(1/2)x
(n)
时,L(θ)达到最大,所以参数θ的最大似然估计量为 [*]=(1/2)X
(n)
,其中X
(n)
=max{X
1
,X
2
,…,X
n
},由于X
(n)
的概率密度为 [*]=(n/θ
n
)(x-θ)
n-1
,θ≤x≤2θ,故 EX
(n)
=∫
θ
2θ
x(n/θ
n
)(x-θ)
n-1
dx=(2n+1)θ/(n+1),从而可得[*]=E(X
(n)
/2)=(2n+1)θ/2(n+1)。
解析
转载请注明原文地址:https://kaotiyun.com/show/jpx4777K
0
考研数学三
相关试题推荐
0
设n维向量α1,α2……αs的秩为r,则下列命题正确的是
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
连续型随机变量X的分布函数F(x)=则其中的常数a和b为()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间内()
设an(x一1)n在x=一1处收敛,则此级数在x=2处().
设函数f(t)连续,则二次积分
求极限
一阶常系数差分方程yt+1一4yt=16(t+1)4t满足初值y0=3的特解是yt=____________.
随机试题
气缸漏气量检测仪检测气缸漏气量时从加机油口处听到漏气声说明()处漏气。
什么是基点与节点?
目标的制定要有一定的高度和难度,这体现了目标的()。
麦角生物碱临床用于
北京某药品生产企业拟在上海某药学专业杂志2013年第10期(月刊)上刊登处方药广告,根据《药品广告审查办法》,符合规定可以刊登的广告批准文号为
承担水运工程施工监理的单位,应具有(),具有法人资格,并应按批准的相应资质等级承担监理业务。
如果有多种不同商品需要填报在一张报关单上,应分别填报清楚,但一张报关单上最多不能超过()项海关统计商品码的货物。
我国金融机构的雏形始于()。
下列说法正确的是()。
星形线绕Ox轴旋转所得旋转曲面的面积为_________.
最新回复
(
0
)