首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中 (1)求正交变换X=QY将二次型化为标准形; (2)求矩阵A.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中 (1)求正交变换X=QY将二次型化为标准形; (2)求矩阵A.
admin
2019-08-28
52
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX,A的主对角线上元素之和为3,又AB+B=O,其中
(1)求正交变换X=QY将二次型化为标准形;
(2)求矩阵A.
选项
答案
(1)由AB+B=O得(E+A)B=O,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=-1为A的特征值且不低于2重, 显然λ=-1不可能为三重特征值,则A的特征值为λ
1
=λ
2
=-1,λ
3
=5. 由(E+A)B=o得B的列组为(E+A)X=0的解, 故α
1
=[*],α
2
=[*]为λ
1
=λ
2
=-1对应的线性无关解. 令α
3
=[*]为λ
3
=5对应的特征向量, 因为A
T
=A,所以 [*] 令β
1
=[*],β
2
=α
2
-[*],正交化得 [*] 令Q=(γ
1
,γ
2
,γ
3
),则f=X
T
AX[*]-y
1
2
-y
2
2
+5y
3
2
. (2)由 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/jvJ4777K
0
考研数学三
相关试题推荐
(2013年)函数的可去间断点的个数为()
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
设A=当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:矩阵A的特征值和特征向量.
设二次型f(x1,x2,x3)经正交变换化成了标准形f=4y12+y22-2y32,求二次型f(x1,x2,x3).
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
对于随机变量X1,X2,…,X3,下列说法不正确的是().
随机试题
孙某委托吴某为代理人购买一批货物,吴某的下列行为中违反法律法规的是()。
《春风沉醉的晚上》是郁达夫的散文代表作。()
男性,50岁,慢性支气管疾患10余年,近3个月病情加重,痰中找到硫黄颗粒,右胸壁见瘘管,胸片示右下叶片状阴影,病变累及局部胸膜、胸壁,最可能的诊断是
造影时病人出现重度碘过敏反应,最有效的措施是
A、同一药物,剂型不同,其作用的快慢、强度、持续时间不同B、同一药物,制成同一剂型,由于制备工艺不同而表现不同C、同一药物,制成同一剂型,由于处方组成不同而表现不同D、同一药物,剂型不同,其副作用、毒性不同E、同一药物,
一般情况下,()的建筑工程可以不申请施工许可证。
(操作员:李主管;账套:501账套;操操作日期:2015年1月31日)修改并设置工资项目。工资表名:1月份工资表项目名称:岗位工资类型:数字长度:12小数:2
Alargenumberofcars______parkedinfrontofmyhouse.
可行性分析报告的重点内容是对建设方案的可行性分析和【】估计,最后得出分析结论。
程序设计方法要求在程序设计过程中
最新回复
(
0
)