首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设P=Q为三阶非零矩阵,且PQ=0,则( ).
设P=Q为三阶非零矩阵,且PQ=0,则( ).
admin
2022-04-02
242
问题
设P=
Q为三阶非零矩阵,且PQ=0,则( ).
选项
A、当t=6时,r(Q)=1
B、当t=6时,r(Q)=2
C、当f≠6时,r(Q)=1
D、当t≠6时,r(Q)=2
答案
C
解析
因为Q≠O,所以r(Q)≥1,又由PQ=O得r(P)+r(Q)≤3,当t≠6时,r(P)≥2,则r(Q)≤1,于是r(Q)=1,选(C).
转载请注明原文地址:https://kaotiyun.com/show/k2R4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT。(Ⅰ)证明A是实对称矩阵;(Ⅱ)证明A是负惯性指数为0;(Ⅲ)设r(α1,α2,…,αs)=k,求二次型XTAX的规范性。
[*]
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为销售量,求:(I)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(Ⅰ)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
已知下列非齐次线性方程组:当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24-0.2p1和q2=10-0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总
随机试题
精准医疗是指以个体化医疗为基础,通过基因组、蛋白质组等技术,对大样本人群与特定疾病类型进行生物标记物的分析与鉴定、验证与应用,从而精确寻找到疾病的原因和治疗的靶点,最终实现对疾病和特定患者进行个性化精确治疗。根据上述定义,下列选项不属于精准医疗的是:
A.心脏中心部位钙化,有明显移动性B.冠状沟部呈树枝状钙化影C.肺门部位钙化影D.心内膜线状钙化影E.冠状动脉内钙化影下列病例X线片可见上述哪项表现:男性,70岁。无高血压和高血脂史,近3周来常有胸痛伴
A.0.02%NaF漱口液B.0.05%NaF漱口液C.0.2%NaF漱口液D.1.23%NaF凝胶E.2%NaF溶液每周漱口使用的是
低钾性碱中毒后期出现反常性酸性尿是因为
有机磷农药是目前使用较多的农药,用于有机磷中毒解救药物有
城市公共停车场应分()三类。
李某向陈某借款10万元,将一辆卡车抵押给陈某。抵押期间,卡车因车祸严重受损。李某将卡车送到某修理厂大修,后李某无力支付2万元修理费,修理厂遂将卡车留置。经催告,李某在约定的合同期间内仍未支付修理费。此时,李某亦无法偿还欠陈某的到期借款,陈某要求修理厂将卡车
光污染泛指影响自然环境,对人类正常生活、工作、休息和娱乐带来不利影响,损害人们观察物体的能力,引起人体不舒适感和损害人体健康的各种光。从广义上来说,光污染还包括了视觉污染,即城市环境中杂乱的视觉环境。根据上述定义,下列描述不涉及光污染的是(
下面关于解释程序和编译程序的论述,其中正确的一条是______。
A、Ithasseenasteadydeclineinitsprofits.B、Ithasbecomemuchmorecompetitive.C、Ithaslostmanycustomerstoforeignco
最新回复
(
0
)