首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2019-01-19
68
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
,β
2
=l
1
,α
1
+l
2
,α
2
,其中k
1
,k
2
与l
1
,l
2
是不全为0的常数。 由k
1
,β
1
+k
2
,β
2
一l
1
α
1
一l
2
α
2
=0,得新的齐次方程组 [*] 对新方程组的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组的系数矩阵变为[*],可知方程组只有零解,即k。 =k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。于是 η=(l
1
+4l
2
)β
1
+(l
2
+7l
2
)β2=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
2
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/kBP4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是同分布的随机变量,且EX1=0,DX1=1_不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
计算=_______,其中D由曲线|χ|+|y|=1所围成.
设α1,α2,…,αm为线性方程组Aχ=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βm=t1αm+t2α1,其中t1,t2为实常数,试问t1,t2满足什么关系时,β1,β2,…,βm也为Aχ=0的一个基础解系.
设X与Y独立且X~N(μ,σ2),Y服从区间[-π,π]上的均匀分布,求Z=X+Y的密度fZ(z).
差分方程6yt+1+9yt=3的通解为_______.
已知3维列向量β不能由α1=能否相似对角化?若能则求出可逆矩阵P使P—1AP=A.若不能则说明理由。
设二阶线性微分方程y"+p(x)y’+q(x)y=f(x)有三个特解y1=ex,y2=ex+,y3=ex+e—x,则该方程为_________.
设α1,α2,α3是四厄非齐次线性方程绀Ax=b的三个向量,秩(A)=3.α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,r表示任意常数,线性方程细Ax=b的通解x=___________.
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.求X的分布律;
随机试题
英、法两国在处理代理人与第三人所为的法律行为是否拘束本人的问题时所采用的法律适用原则是()
多用于急性心肌梗死诊断的酶是
广域网,又称为远程网,它所覆盖的地理范围一般:
关于技术分析,下列说法错误的是()。
根据增值税法律制度的规定,一般纳税人发生的下列业务中,允许开具增值税专用发票的是()。
成本预算的编制过程,是对公司未来经营管理活动成本的安排过程,为了保证成本预算的有效性,编制成本预算时,必须遵循的基本要求包括()
李四是班里的数学课代表,是一个理解能力特别强、善解人意的学生。他从小学一年级起就在学校里吃“小饭桌”,自己很会照顾自己。他每天总是早早地收拾好作业本,将交作业的情况很细致地汇报给科任老师。但他常常捉弄同学,拿走他人的文具盒、乘车卡等物品。他属于那种在师长面
感觉人脑对直接作用于感觉器官的客观事物的整体反映,其实质是回答作用于感官的事物“是什么”的问题。()
数据库的网状模型应满足的条件是
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
最新回复
(
0
)