首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2019-01-19
54
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
,β
2
=l
1
,α
1
+l
2
,α
2
,其中k
1
,k
2
与l
1
,l
2
是不全为0的常数。 由k
1
,β
1
+k
2
,β
2
一l
1
α
1
一l
2
α
2
=0,得新的齐次方程组 [*] 对新方程组的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组的系数矩阵变为[*],可知方程组只有零解,即k。 =k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。于是 η=(l
1
+4l
2
)β
1
+(l
2
+7l
2
)β2=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
2
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/kBP4777K
0
考研数学三
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
设级数条件收敛,则【】
设总体的密度为:f(χ)=其中θ>0,而θ和μ为未知参数.从X中抽得简单样本X1,X2,…,Xn.试求θ和μ的矩估计和最大似然估计.
设某产品的总成本函数为C(χ)=400+3χ+χ2而需求函数p=,其中χ为产量(假定等于需求量),p为价格,试求:1)边际成本为_______;2)边际收益为_______;3)边际利润为_______;
计算二重积分其中D={(x,y)||x|≤1,|y|≤1).
设随机变量X与Y相互独立,且X服从正态分布N(0.1),Y在区间[一1.3]上服从均匀分布,则概率P{max(X,Y)≥0}=_________.
设A、B都是n阶实对称矩阵,证明:存在正交矩阵P,使得P—1AP=B的充分必要条件是A与B有相同的特征多项式.
求函数f(x)=的最大值与最小值.
随机试题
当前使用的IP地址是一个__________的二进制地址。()
从情感范畴来看,廉洁奉公是一种
“没有疾病和症状就是健康”的观点属于
患者男,40岁。护士听到病人说:“他们走,苹果衣服,游泳他得心,不要抓,狗叫”等。该症状属于
患者,女性,54岁。近半年来上腹部疼痛,尤以空腹和夜间为重,进食可缓解。可明确诊断的检查是
根据我国《证券法》的规定,股票依法发行后,由发行人经营与收益的变化所引致的投资风险,由( )负责。
义务教育阶段数学课程目标需从知识技能、_______、_______、_______等四个方面进行阐述.
小组活动的特点是()
ThepeoplewhorunFacebookarefuriousaboutanewmoviethatdepictstheexistenceofFace-book.They’reupsetbecausemuchof
Consumersarecreaturesofhabit:theybuythesameproductstimeandtimeagain,andsuchistheirfamiliaritywithbigbrands
最新回复
(
0
)