首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2019-01-19
97
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
,β
2
=l
1
,α
1
+l
2
,α
2
,其中k
1
,k
2
与l
1
,l
2
是不全为0的常数。 由k
1
,β
1
+k
2
,β
2
一l
1
α
1
一l
2
α
2
=0,得新的齐次方程组 [*] 对新方程组的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组的系数矩阵变为[*],可知方程组只有零解,即k。 =k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。于是 η=(l
1
+4l
2
)β
1
+(l
2
+7l
2
)β2=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
2
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/kBP4777K
0
考研数学三
相关试题推荐
设A*为n阶方阵A的伴随矩阵(n≥2).证明:
已知3阶方阵A的行列式|A|=2,方阵B=其中Aij为A的(i,j)元素的代数余子式,求AB.
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,a为常数,则|aE-A*|=_______.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
设总体X的分布函数为其中参数θ(0<θ<1)未知.X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
设X和Y是任意两个随机变量,若D(X+Y)=D(X-Y),则
检查员逐个地检查某产品,每次花10秒钟检查一个,但也可能有的产品需要再花10秒钟重复检查一次,假设每个产品需要重复检查的概率为0.5,求在8小时内检查员检查的产品个数多于1900个的概率是多少?
设f(x)=nx(1一x)n(n=1,2,…),Mn是f(x)在[0,1]上的最大值,求Mn.
微分方程y"一y=ex+1的一个特解应具有形式().
设n阶方阵A的特征值为2,4,…,2n,则行列式|3E-A|=_______.
随机试题
下述哪项是急性坏死型胰腺炎的特点
A、心肌退行性病变和心肌间质水肿B、呼吸系统肺纤维化C、肝脏毒性D、出血性膀胱炎E、外周神经毒性长期应用环磷酰胺易引起的特有毒性反应为
直肠指检,肠壁上扪及高低不平硬块、肠腔狭窄、指套染有脓血和黏液者应考虑
根据《招标投标法》的规定,下列关于投标有效期的延长表述中不正确的是()。
某学生准备报考注册会计师。并认为只要考试合格就可以从事会计工作。()
Hairlosscanbedestructiveforthemillionsofmenandwomenwhoexperienceit.Nowscientistsarereportingthatasubstance
程序性知识
当枪声平息下来后,我爬出帐篷,看到那名向我要烟的男子的脸朝下趴在那里。周围的人说,他已经死了,显然死于心脏病发作。这也是许多刚果人的结局,不死在枪林弹雨中,也会死在各种各样的疾病中。从以上文字推测作者目睹男子死亡的情绪中包括最主要的是()。
下列关于Windows2003系统DHCP服务器的描述中,错误的是()。
Everyoneagreesonhowtelevisionaffectsviewers.
最新回复
(
0
)